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Abstract 

The trans-1,3-diphenyl-2,3-epoxy-1-propanone was synthesized from benzaldehyde and 2-

bromoacetophenone in 20 min which is more economical. The presence of ethanol and Br in 2-

bromoacetophenone facilitated the reaction. The vicinal diaxial coupling constant of trans-1,3-

diphenyl-2,3-epoxy-1-propanone was zero, an indication of trans configuration for a rigid 3-

membered ring at ~90
o
 dihedral angle. 1-(2,4-Dinitrophenyl)-3,5-diphenyl-1H-pyrazol-4-ol was 

synthesized from trans-1,3-diphenyl-2,3-epoxy-1-propanone and 2,4-dinitro phenylhydrazine in 

glacial CH3COOH to give 85.5% yield and characterized using FTIR, 
1
H, 

13
C NMR, DEPT 135 

and MS spectra. The 1-(2,4-dinitrophenyl)-3,5-diphenyl-1H-pyrazol-4-ol can be exploited for 

unique biological activities and in the synthesis of synthetic fibers. 

 

Keywords: 1-(2,4-dinitrophenyl)-3,5-diphenyl-1H-pyrazol-4-ol, trans-1,3-diphenyl-2,3-
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Introduction  
Chalcone epoxides are produced through 

Darzens reaction of α-halo carbonyl with 

aldehydes in a basic condition such as sodium 

hydroxide, lithium hydroxide, lithium 

carbonate, potassium carbonate, potassium 

hydroxide, sodium ethoxide, sodium amide, 

sodium tert-butoxide (Tanaka and Shiraishi 

2001, Li and Li 2014, Preveena et al. 2015, 

Mphahlele et al. 2019). They are useful 

synthons in the synthesis of organic 

compounds through ring opening to produce 

C–C bond. Chalcone epoxides act as 

electrophiles due to their inherent polarity 

caused by the oxygen atom and strain in the 

three-membered epoxide ring responsible for 

the facile formation and higher reactivity 

toward nucleophiles. They react easily with 

various nucleophiles such as hydrazines, thiols, 

alcohols, amines or imines, hydroxylamines 

under nucleophilic substitution reactions to 

produce pyrazolines, furans, oxazolidines, 

pyrimidines, isoxazoles, quinolinones (Huo et 

al. 2013, Roman 2016, Mphahlele et al. 2019). 

Pyrazoles resemble cyclic hydrazines with 

endocyclic double bonds. The pyrazoles are 

formed from the reactions of hydrazines with 

1,3-diketones (Komendantova et al. 2020), α, 

β-unsaturated aldehydes and ketones (Ding et 

al. 2016, Zhu et al. 2020), enol-ethers 

(Tarabová et al. 2014) acetals (Lukicheva et al. 

2018, Khatab et al. 2019), enamines (Duan et 

al. 2019), alkynes (Meng et al. 2019) under 

acidic conditions (Jiang et al. 2013, Akbari 

2017), basic conditions (Girish et al. 2014) or 

neutral conditions (Wang et al. 2018) with a 

mixture or a regioisomer. Pyrazoles are 

synthesized from chalcone epoxides through 

chalcone oxidation, cyclization and 

aromatization (Bhat et al. 2005, Roman 2016, 

Bakthadoss and Surendar 2020, Farooq and 

Ngaini 2020). Pyrazoles are found to have 



Ovonramwen - Synthesis of 1-(2,4-Dinitrophenyl)-3,5-Diphenyl-1H-Pyrazol-4-ol … 

1244 

profound biological and pharmacological 

activities such as anti-microbial, anti-cancer, 

antileishmanial, anti-inflammatory, analgesic, 

anti-tubercular activities (Karrouchi et al. 2018, 

Costa et al. 2021).  

The reactivity of chalcone epoxides towards 

nucleophiles as well as their facile 

transformation to heterocyclic compounds 

geared the synthesis of 1-(2,4-dinitrophenyl)-

3,5-diphenyl-1H-pyrazol-4-ol which can be a 

novel compound with unique biological 

activities and also exploited in the synthesis of 

synthetic fibers. 

 

Materials and Methods  
Analytical grade reagents were used. Melting 

points were determined uncorrected on Stuart 

SMP-10. Infrared spectra (ATR, IR) of the neat 

sample were recorded in transmittance on a 

CARY 630. IR spectra data were reported in 

frequency of absorption in cm
–1

 and were 

assigned as s, for strong; m, for medium; as, for 

asymmetry; and sy, for symmetry. NMR 

spectra data for 
1
H, 

13
C and the nature of C, 

CH, and CH2 were determined by DEPT 135, 

and were recorded in HDO and CDCl3 on a 

Bruker Avance DPX-500 spectrometer. The 

NMR signals were labelled as s (singlet), d 

(doublet), t (triplet), q (quartet), and m 

(multiplet). The molecular ion was determined 

using gas chromatography-mass spectrometry 

(GC-MS) of Multi-User Science Research 

Laboratory ABUZ. 

 

Methods 

Synthesis of trans-1,3-diphenyl-2,3-epoxy-1-

propanone 

To a mixture of NaOH (0.40 g, 0.01 mol), 

water (10 mL), ethanol (5 mL) in a conical 

flask, 2-bromoacetophenone (I) (1.99 g, 0.01 

mol) was added and then benzaldehyde (II) 

(1.06 g, 0.01 mol) stirred 0-5 °C for 20 min. 

The solid formed was filtered and washed with 

distilled water and air-dried. The crude product 

was recrystallized from ethanol to give a pure 

trans-1,3-diphenyl-2,3-epoxy-1-propanone 

(III) (2.11 g, 94 %) (Ovonramwen et al. 2021) 

(Scheme 1).  

O

Br

O

H+

O

O

10% NaOH, ethanol

0-5 oC, 20 min (94%)

(I) (II) (III)  
Scheme 1: Synthesis of trans-1,3-diphenyl-2,3-epoxy-1-propanone. 

 

C15H12O2: yield 94%; white crystals; m.p. 

88-90 
o
C (lit 82-85 °C, Tanaka and Shiraishi 

2001; 86-89 °C, Sigma-Aldrich 2021); Rf 0.75 

(CHCl3: Pet 3:7). FT-IR (ATR), V/cm
–1

: 3019 

(Aromatic C-H, str), 1685 (C=O, str), 1595, 

1495 (C=C, str), 1409 (C=C, str), 1234 (C–H 

as trans-epoxide, str), 1111 (C–O–C, m), 1074, 

1033, 939, 891 (C–H sy, trans-epoxide, str), 

831 (epoxide), 753, 668, 693; 
1
H NMR (500 

MHz, CDCl3), δ: 4.09 (d, H, CHα, J = 0 Hz), 

4.33 (d, H, CHβ, J = 0 Hz), 7.39-7.42 (m, 5 H, 

C6H5), 7.47-7.51 (t, 2 H, m-CO-C6H5, J1 = 10 

Hz, J2 = 10 Hz), 7.61-7.63 (t, H, p-CO-C6H5, J1 

= 10 Hz, J2 = 10 Hz), 8.01-8.03 (d, 2 H, o-CO-

C6H5, J = 10 Hz). 
13

C NMR (120 MHz CDCl3), 

δ: 59.43 (C-β, CH-epoxy), 61.02 (C-α, CH-

epoxy), 125.86 (o-2C, epoxy phenyl), 128.38 

(p-C epoxy phenyl), 128.82 (m-2C, epoxy 

phenyl), 128.93 (m-2C, CO-phenyl), 129.11 (o-

2C, CO-phenyl, 134.05 (C, p-CO phenyl), 

135.48 (C, CO-phenyl), 135.53 (C, epoxy 

phenyl), 193.08 C=O. 

 

Synthesis of 1-(2,4-dinitrophenyl)-3,5-

diphenyl-1H-pyrazol-4-ol 

An equimolar of the trans-1,3-diphenyl-2,3-

epoxy-1-propanone (III) (2.24 g, 0.01 mol) and 

2,4-dinitrophenylhydrazine (IV) (1.68 g, 0.01 

mol) was dissolved in 30 mL glacial 

CH3COOH in a flat bottom flask. The solution 

was refluxed for 6 h, cooled, and poured into 

crushed ice. The solid (3.30 g) obtained was 

recrystallized from iso-amyl acetate to give 

orange crystals 85.5% (Scheme 2). 
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Scheme 2: Synthesis of 1-(2,4-dinitrophenyl)-3,5-diphenyl-1H-pyrazol-4-ol. 

  

C21H14N4O5: orange crystals; m.p. 243-245 
o
C; Rf 0.53 (CHCl3: Hex 1:1). FT-IR (ATR), 

V/cm
–1

: 3276 (OH, str), 3068 (Aromatic C–H, 

str), 1618 (C=N, str), 1584 (C=C str), 1502 

(NO2 as, str), 1416 (C=C, str), 1312 (NO2 sy, 

str), 1260, 1215 (C–N bend, str), 924, 890 (C–

H bend). 
1
H NMR (500 MHz, CDCl3), δ: 7.49-

7.51 (m, 6 H), 7.80–7.82 (m, 4 H), 8.13–8.17 

(m, H, o- NO2-phenyl), 8.38-8.41 (dd, H, m- 

NO2-phenyl, J1 = 5 Hz, J2 = 5 Hz,), 9.18–9.19 

(d, H, m-NO2-phenyl, J = 5 Hz), 11.35 (OH). 
13

C NMR (CDCl3), δ: 116.80, 123.52, 127.66, 

129.04, 129.42, 130.05, 131.05, 133.12, 

138.29, 144.85, 147.87; MS: m/e, calcd 402.00, 

found 402.3. 

 

 

Results and Discussion  
The compound trans-1,3-diphenyl-2,3-

epoxy-1-propanone (III) was prepared from 

benzaldehyde (II) and 2-bromoacetophenone 

(I) at 0–5 °C in ethanolic NaOH in 20 min to 

give 94% yield which is more economical 

compared to 2 h reported by Tanaka and 

Shiraishi (2001). The presence of ethanol and 

Br in compound I facilitated the reaction. 

Deprotonation of compound I with NaOH led 

to an enolate formation which was reacted with 

compound II to produce an oxyanion 

tetrahedral intermediate (IIIa). This was 

followed by rotation, debromination, and 

subsequent cyclization to give trans-1,3-

diphenyl-2,3-epoxy-1-propanone (III) (Scheme 

3). 

O

 CHBr

O
_

 CBr

O

H

O O
_

Br

H

(deprotonation)
(enolization)

_
_

-

O

H

Br
H

O

O

 OH
_

(I)

(II) (IIIa)

(III)

(debromination 

and cyclization)

O

 CHBr (nucleophilic addition)

Br

O

O
-

(rotation)

  
Scheme 3: Possible mechanism of trans-1,3-diphenyl-2,3-epoxy-1-propanone. 
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The structure of the compound was 

determined using spectroscopic analyses 

(FTIR, 
1
H, 

13
C NMR, and DEPT 135). The IR 

spectrum of trans-1,3-diphenyl-2,3-epoxy-1-

propanone showed vibrations for the C=O 

(1685 cm
–1

), asymmetry and symmetry trans-

epoxide (1234 and 891 cm
–1

,
 

respectively) 

(Pretsch et al. 2009). 
1
H-NMR spectrum for 

CH-α and CH-β appeared as doublets at 4.09 

and 4.33 ppm, respectively. This correlated 

with the reported data (Li et al. 2009, Roman 

2016, Mphahlele et al. 2019). A small coupling 

constant was reported for chalcone epoxide to 

produce trans-isomers (Roman 2016, 

Mphahlele et al. 2019). The vicinal diaxial 

coupling constant was zero, an indication of 

trans configuration for a rigid 3-membered ring 

at ~90
o
 dihedral angle (Simpson 2012, 

Mphahlele et al. 2019). The 10 aromatic 

protons were in the range of 7.39–8.03 ppm 

(Roman 2016, Mphahlele et al. 2019). The 
13

C 

NMR confirmed the compound where CH-β 

and CH-α shifts are at δ 59.43 and δ 61.02 

ppm, respectively as expected for trans 

chalcone epoxide and C=O at 193.08 ppm 

(Roman 2016, Mphahlele et al. 2019, Gunstone 

et al. 2021) (Figures 1-3). 

 
Figure 1: FTIR of trans-1,3-diphenyl-2,3-epoxy-1-propanone. 

 
Figure 2: 

1
H spectrum of trans-1,3-diphenyl-2,3-epoxy-1-propanone in CDCl3. 
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Figure 3: 

13
C spectrum of trans-1,3-diphenyl-2,3-epoxy-1-propanone in CDCl3. 

 

The compound 1-(2,4-dinitrophenyl)-3,5-

diphenyl-1H-pyrazol-4-ol was synthesized 

from trans-1,3-diphenyl-2,3-epoxy-1-

propanone and 2,4-dinitro phenylhydrazine in 

glacial acetic acid to give 85.5% yield.  

The IR spectrum showed the absence of 

C=O absorption band of trans-1,3-diphenyl-

2,3-epoxy-1-propanone at 1685 cm
–1 

and the 

appearance of OH, C=N, NO2 (as) and NO2 

(sy) in 1-(2,4-dinitrophenyl)-3,5-diphenyl-1H-

pyrazol-4-ol at 3276, 1618, 1502, and 1312 

cm
–1 

absorption bands, respectively (Pretsch et 

al. 2009). The 
1
H-NMR spectrum of 1-(2,4-

dinitrophenyl)-3,5-diphenyl-1H-pyrazol-4-ol 

showed the presence of OH signal at 11.35 

ppm and the completely disappearance of CH-α 

and CH-β in the trans-1,3-diphenyl-2,3-epoxy-

1-propanone. There was an increase in 

aromatic protons which shifted downfield from 

7.39–8.03 of trans-1,3-diphenyl-2,3-epoxy-1-

propanone to 7.49-9.19 ppm of 1-(2,4-

dinitrophenyl)-3,5-diphenyl-1H-pyrazol-4-ol 

due to the mesomeric deshielding effect of 

electronegative nitrogen atoms in the 

compound. The 
1
H-NMR spectrum was within 

reported data (Akbari and Mirjalili 2016). The 
13

C NMR confirmed the formation of the 

compound with the absence of CH-β and CH-α 

at 59.43 and 61.02 ppm, respectively and C=O 

at 193.08 ppm. The molecular ion (402) M
+
 of 

1-(2,4-dinitrophenyl)-3,5-diphenyl-1H-pyrazol-

4-ol also supported the formation (Figures 4-7). 
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Figure 4: FTIR of 1-(2,4-dinitrophenyl)-3,5-diphenyl-1H-pyrazol-4-ol. 

 
Figure 5: 

1
H spectrum of 1-(2,4-dinitrophenyl)-3,5-diphenyl-1H-pyrazol-4-ol in CDCl3. 
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Figure 6: 

13
C spectrum of 1-(2,4-dinitrophenyl)-3,5-diphenyl-1H-pyrazol-4-ol in CDCl3. 

 
Figure 7: MS spectrum of 1-(2,4-dinitrophenyl)-3,5-diphenyl-1H-pyrazol-4-ol in CDCl3. 
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Conclusions 

The compound trans-1,3-diphenyl-2,3-epoxy-

1-propanone was synthesized to give 94% yield 

in 20 min which is more economical. The 

presence of ethanol and Br in 2-

bromoacetophenone facilitated the reaction. 

The vicinal diaxial coupling constant of the α- 

and β-hydrogens in trans-1,3-diphenyl-2,3-

epoxy-1-propanone was zero, an indication of 

trans configuration for a rigid 3-membered ring 

at ~90° dihedral angle. The desired compound 

1-(2,4-dinitrophenyl)-3,5-diphenyl-1H-pyrazol-

4-ol was synthesized via trans-1,3-diphenyl-

2,3-epoxy-1-propanone and the spectra data 

(FTIR, 
1
H, 

13
C NMR, DEPT 135 and MS 

spectra) corresponded with available data in the 

literature.  
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