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Abstract 

The nonlinear matrix equation 𝑋 − 𝐴∗𝑒𝑋𝐴 = 𝐼  was solved by Gao (2016) via standard fixed 

point method. In this paper, three more elegant iterative methods are proposed to find the 

approximate solution of the nonlinear matrix equation 𝑋 − 𝐴∗𝑒𝑋𝐴 = 𝐼,  namely: Newton’s 

method; modified fixed point method and a combination of Newton’s method and fixed point 

method. The convergence of Newton’s method and modified fixed point method are derived. 

Comparative numerical experimental results indicate that the new developed algorithms have both 

less computational time and good convergence properties when compared to their respective 

standard algorithms. 

 

Keywords: Hermitian positive definite solution, nonlinear matrix equation, modified fixed point 

method, iterative method. 

 

Introduction 

The nonlinear matrix equation 

 𝑋 − 𝐴∗𝑒𝑋𝐴 = 𝐼                   (1) 

is considered, where 𝐴  is the given square 

matrix, 𝐴∗ denotes the matrix of complex 

conjugate entries, 𝐼 is an identity matrix and 

𝑋 is an unknown Hermitian Positive Definite 

Solution (HPDS) to be determined. The general 

basic form of Equation (1) is 

 𝑋 + 𝐴∗ℱ(𝑋)𝐴 = 𝑄,  where 𝑄 >  0.  
    (2) 

Equation (2) for different ℱ(𝑋)  has been 

studied widely (Engwerda 1993, Zhang et al. 

2011, Chacha and Kim 2019) and has been 

found to be applicable in modeling of physical 

processes arising in statistics, control theory, 

stochastic filtering and  Kalman filtering 

(Anderson et al. 1990, Engwerda 1993, Guo 

and Lancaster 1999, Ivanov et al. 2005, 

Berzing and Samet 2011). Chacha and Naqvi 

(2018) derived the condition numbers of the 

nonlinear matrix equation 𝑋𝑛 − 𝐴∗𝑒𝑋𝐴 = 𝐼 

and developed an iterative algorithm useful in 

finding its approximate solution. Gao (2016) 

derived sufficient and necessary conditions for 

the existence of HPD solution of Equation (1) 

and suggested the basic fixed point method to 

obtain its approximate HPD solution. However, 

no numerical experiments were reported to 

reveal the efficiency of the developed 

algorithm. 

This study is important in the following 

ways: First, a Newton’s method is applied in 

finding the solution of Equation (1). Second, it 

introduces the modified fixed point algorithm 

and a combined Newton’s method and the 

fixed point method algorithm in obtaining 

solution of Equation (1). It is further shown 

that modified fixed point algorithm 

outperforms Newton’s method in terms of 
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computation time especially for large matrix 

size. Moreover, a combination of pure 

Newton’s method and fixed point method is 

proposed and outperform pure Newton’s 

method since the Newton’s step is solved by 

the basic fixed point approach which makes it 

to take less computation time. It also derives 

the existence of a fixed point by applying 

Banach’s fixed point theorem and shows that 

the modified fixed point method has a better 

convergence as compared to the basic fixed 

point method. The following notations and 

definitions will be used throughout this paper: 

𝜌(∎)  stands for spectral radius: ℱ ∘ ℳ 

denotes the composition of the operators 

ℱ and ℳ,  where ℱ ∘ ℳ(𝑋) = ℱ(ℳ(𝑋)); 

𝑣𝑒𝑐 ( 𝐴) = [𝑎1
𝑇 , 𝑎2

𝑇 . ⋯ , 𝑎𝑛
𝑇]𝑇 is the column-

wise vector representation of matrix 𝐴  and 

𝑣𝑒𝑐(𝐴𝑋𝐵 )=(𝐵𝑇⨂𝐴)𝑣𝑒𝑐(𝑋) ; 𝐶 ⊗ 𝐷 = [𝑐𝑖𝑗]𝐵 

is the tensor or kronecker product of the 

matrices 𝐶  and 𝐷 ; 𝐵𝜖(𝑋0)̅̅ ̅̅ ̅̅ ̅̅ ̅  stands for a 

closed ball with a radius 𝜖 and centre 𝑋0 ; 

𝐴𝑇  stands for transpose of matrix 𝐴 ; 0 

represents square null matrix; ⨁  stands for 

Kronecker sum; ‖∎‖ ≔ ‖∎‖2 is the spectral 

norm; ‖∎‖𝐹  stands for Frobenius norm and 

for any matrices 𝐶, 𝐷 ∈ ℝ𝑚×𝑛,  𝐶 ≥ 𝐷(𝐶 >

𝐷) if [𝑐𝑖𝑗] ≥ [𝑑𝑖𝑗]([𝑐𝑖𝑗] > [𝑑𝑖𝑗]) for all 𝑖, 𝑗. 

 

Definition 1 (Ortega and Rheinboldt 2008) 

For a general function 𝐹: 𝐶𝑛×𝑛 → 𝐶𝑛×𝑛, 
Newton’s method for the solution of 𝐹(𝑋) = 0 

is specified by an initial approximation 𝑋0 

and the recurrence 𝑋𝑘+1 = 𝑋𝑘 −
𝐹′(𝑋𝑘)−1𝐹(𝑋𝑘) , for all  𝑘 = 0, 1, 2 , ⋯ , 

where 𝐹′ denotes the Fréchet derivative. 

Definition 2 (Higham and Al-Mohy 2008, 

Mathias 1992) 

The Fréchet derivative of a matrix function 𝑒𝑋 

at 𝑋0 in the direction 𝑍 is given by 

∫ 𝑒𝑡𝑋𝑍𝑒(1−𝑡)𝑋𝑑𝑡 ≈ 𝑒𝑋/2𝑍𝑒𝑋/21

0
        (3) 

Lemma 1 (Theorem 3, Gao 2016) 

If 𝐴  is invertible and equation (1) has a 

solution, then 𝜌(𝐴) ≤
1

𝑒
. 

Lemma 2 (Ortega and Rheinboldt 2008) 

Let 𝐴, 𝐵 ∈ 𝐶𝑛×𝑛  and assume that 𝐴  is 

invertible with ‖𝐴−1‖ ≤ 𝛼.  If ‖𝐴 − 𝐵‖ ≤ 𝛽 

and 𝛼𝛽 < 1,  then 𝐵  is also invertible, and 

‖𝐵−1‖ ≤
𝛼

(1−𝛼𝛽)
. 

Lemma 2 

Let 𝑋, 𝑌 ∈ 𝐶𝑛×𝑛 , then ‖𝑒𝑋 − 𝑒𝑌‖ ≤
‖𝑋 − 𝑌‖𝑒max(‖𝑋‖,   ‖𝑌‖). 

Proof: From the exponential identity 

𝑒(𝐴+𝑍)𝑡 = 𝑒𝑋𝑡 + ∫ 𝑒𝑋(𝑡−𝑠)𝑍𝑒(𝑋+𝑍)𝑠𝑑𝑠,
1

0
 with  

𝑡 = 1, and 𝑌 = 𝑋 + 𝑍,  it follows that  

                 𝑒𝑌

= 𝑒𝑋

− ∫ 𝑒𝑋(1−𝑠)(𝑌 − 𝑋)𝑒𝑌𝑠𝑑𝑠 

1

0

 

           = 𝑒𝑋 + ∫ 𝑒𝑋(1−𝑠)(𝑋 −
1

0

𝑌)𝑒𝑌𝑠𝑑𝑠  

𝐓𝐡𝐮𝐬,   

‖𝑒𝑋 − 𝑒𝑌‖ ≤ ‖𝑋 − 𝑌‖ ∫ 𝑒‖𝑋‖(1−𝑠)𝑒‖𝑌‖𝑠𝑑𝑠 

1

0

 

                  ≤ ‖𝑋 −

𝑌‖ ∫ 𝑒max (‖𝑋‖,   ‖𝑌‖)𝑑𝑠 
1

0
 

                  = ‖𝑋 −

𝑌‖𝑒max (‖𝑋‖,   ‖𝑌‖). This completes the proof 

of lemma. 

 

Materials and Methods 

In this section, Newton’s method, a CNFP 

method (a combination of Newton’s method 

and fixed point method) and modified fixed 

point method are proposed. 

Newton’s method 

Let Equation (1) be represented by the map 

𝐹(𝑋) = 𝑋 − 𝐴∗𝑒𝑋𝐴 − 𝐼        (4). 

Applying Definition 2 on Equation (4), one has 

that 

𝐹(𝑋 + 𝑍) = 𝑋 + 𝑍 − [𝐴∗(𝑒𝑋+𝑍 − 𝑒𝑋)𝐴]
− 𝐴∗𝑒𝑋𝐴 − 𝐼 

= 𝑋 − 𝐴∗𝑒𝑋𝐴 − 𝐼 + 𝑍 − [𝐴∗(𝑒𝑋+𝑍 − 𝑒𝑋)𝐴]
+ 𝑂(𝑍2) 

𝐹(𝑋 + 𝑍) = 𝐹(𝑋) + 𝑍 − 𝐴∗𝑒
𝑋
2𝑍𝑒

𝑋
2 𝐴 + 𝑂(𝑍2) 

                              (5) 

From Equation (5), the Fréchet derivative 𝐹𝑋
′  

for the function 𝐹(𝑋) is obotained. 
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From Definition 1, we know that 
𝐹𝑋

′ (𝑍): 𝐶𝑛×𝑛 → 𝐶𝑛×𝑛  is the linear operator 

defined by   

𝐹𝑋
′ (𝑍) = 𝑍 − 𝐴∗𝑒

𝑋

2 𝑍𝑒
𝑋

2 𝐴  and 𝑣𝑒𝑐(𝐹𝑋
′ (𝑍)) = (𝐼𝑛2 − (𝑒

𝑋

2 𝐴)
𝑇

⨂ (𝐴∗𝑒
𝑋

2 )) 𝑣𝑒𝑐(𝑍) , we get the 

tensor Fréchet derivative denoted by 𝐷𝑋 = 𝐼𝑛2 − (𝑒
𝑋

2 𝐴)
𝑇

⨂ (𝐴∗𝑒
𝑋

2 ). By Lemma 1, we know that 

𝜌(𝐷𝑋) < 1 and 𝐷𝑋 is non-singular. Thus, the matrix sequence generated by Newton’s method for 

Equation (1) is given by 

{𝑍𝑖 − 𝐴∗𝑒
𝑋𝑖
2 𝑍𝑒

𝑋𝑖
2 𝐴 = −𝐹(𝑋𝑖)

𝑋𝑖+1 = 𝑋𝑖 + 𝑍𝑖 .
,   for all  𝑖 = 0,1, 2, ⋯                               (6) 

Iteration (6) can be rewritten as  

𝑋𝑖+1 = 𝑋𝑖 − (𝐷𝑋𝑖
)

−1
(𝐹(𝑋𝑖))  for all 𝑖 = 0,1, 2, ⋯, which is equivalent to 

𝑋𝑖+1 − 𝐴∗𝑒
𝑋𝑖
2 𝑋𝑖+1𝑒

𝑋𝑖
2 𝐴 = −𝐴∗𝑒

𝑋𝑖
2 𝑋𝑖𝑒

𝑋𝑖
2 𝐴 + 𝐴∗𝑒𝑋𝑖𝐴 + 𝐼. 

 

Newton’s method (NM) for equation (1) 

Step 1: Given a symmetric matrix 𝐴 and an 

initial guess 𝑋0. 

Step 2: Solve Newton’s step in 𝑍𝑖 −

𝐴∗𝑒
𝑋𝑖
2 𝑍𝑒

𝑋𝑖
2 𝐴 = −𝐹(𝑋𝑖). 

Step 3: 𝑋𝑖+1 = 𝑋𝑖 + 𝑍𝑖 ,  for all 𝑖 = 0, 1,
2, ⋯.  

Step 4: Check if ‖𝐹(𝑋𝑘)‖F ≤ 𝑛. eps, where 

𝑛 is the size of matrix 𝐴 and eps= 2.22×
10-16, otherwise go to Step 2. 

Step 5: Display the approximate solution 𝑋. 

Convergence of Newton’s method for 

Equation (1) 

In this subsection, it is shown that NM 

converges to the solution 𝑋. 

Lemma 3 

Let 𝑋 be invertible with ‖𝐴‖2 ‖𝑒
𝑋

2 ‖
2

< 1. 

Then, the linear operator 𝐹𝑋
′ is non-singular, 

and ‖(𝐹𝑋
′)−1‖ ≤

1

(1−‖𝐴‖2‖𝑒
𝑋
2 ‖

2

)

. 

Proof: From 𝐹𝑋
′ (𝑍) = 𝑍 − 𝐴∗𝑒

𝑋

2 𝑍𝑒
𝑋

2 𝐴 , it 

follows that ‖𝐹𝑋
′ (𝑍)‖ ≥ (1 −

‖𝐴‖2 ‖𝑒
𝑋

2 ‖
2

‖𝑍‖).  From the assumption 

that ‖𝐴‖2 ‖𝑒
𝑋

2 ‖
2

< 1,  it follows that 

𝐹𝑋
′ (𝑍) = 0 if and only if 𝑍 = 0. 

This is to say that the operator 𝐹𝑋
′  is 

injective. Since 𝐹𝑋
′  is an operator on the 

finite dimension linear space, 𝐹𝑋
′  is 

surjective. It follows that 𝐹𝑋
′  is regular, and  

‖(𝐹𝑋
′ )−1‖ =

1

min{
‖𝐹𝑋

′ ‖

‖𝑍‖
:𝑍≠0}

≤
1

(1−‖𝐴‖2‖𝑒
𝑋
2 ‖

2

)

.  

Theorem 1 

Suppose that 𝑋0 ∈ ℝ𝑛×𝑛  is invertible, and 

the mapping 𝐹  defined in Equation (4) is 

locally Lipschitz continuous in the 

neighborhood of 𝑋0. More accurately, there 

exists 𝜖 > 0  and 𝐾 > 0, such that for all 

𝑌 ≤ 𝑋  in 𝐵𝜖(𝑋0)̅̅ ̅̅ ̅̅ ̅̅ ̅,  it holds that ‖𝐹𝑋
′ −

𝐹𝑌
′ ‖ ≤ 𝐾‖𝑋 − 𝑌‖,  where 𝐵𝜖(𝑋0) =

{𝑋: ‖𝑋 − 𝑋0‖ ≤ 𝜖}  and 𝐹𝑋
′ ,   𝐹𝑌

′  are the 

Fréchet derivatives of 𝐹 in Equation (4) at 

𝑋, 𝑌 ∈ ℝ𝑛×𝑛  and 𝐾 =
‖𝐴‖2

𝐹

2
‖(𝑋 −

𝑌)−1((𝑋⨁𝑋) −

(𝑌⨁𝑌))‖
2

‖𝑣𝑒𝑐(𝑍)‖2𝑒
max{‖

𝑋

2
⨁

𝑋

2
‖

2,   
‖

𝑋

2
⨁

𝑋

2
‖

2
}
 

Proof: Suppose 𝐹𝑋
′ (𝑍) and 𝐹𝑌

′ (𝑍) are well 

defined. Employing Lemma 2 and the 

properties of tensor product and Kronecker 

sum, it follows that 

 

‖𝐹𝑋
′ (𝑍) − 𝐹𝑌

′ (𝑍)‖𝐹 



Chacha - Elegant Iterative Methods for Solving a Nonlinear Matrix Equation 𝑋 − 𝐴∗𝑒𝑋𝐴 = 𝐼 

1036 

= ‖𝐴∗𝑒
𝑋
2 𝑍𝑒

𝑋
2 𝐴 − 𝐴∗𝑒

𝑌
2𝑍𝑒

𝑌
2𝐴‖

𝐹
 

≤ ‖𝐴‖2
𝐹 ‖(𝑒

𝑋
2 ⨂𝑒

𝑋
2) 𝑣𝑒𝑐(𝑍) − (𝑒

𝑌
2⨂𝑒

𝑌
2) 𝑣𝑒𝑐(𝑍)‖

2
 

≤ ‖𝐴‖2
𝐹 ‖𝑒(

𝑋
2

⨁
𝑋
2

) − 𝑒(
𝑌
2

⨁
𝑌
2

)‖
2

‖𝑣𝑒𝑐(𝑍)‖2 

≤ ‖𝐴‖2
𝐹 ‖(

𝑋

2
⨁

𝑋

2
) − (

𝑌

2
⨁

𝑌

2
)‖

2
𝑒

max{‖
𝑋
2

⨁
𝑋
2

‖
2,   

‖
𝑌
2

⨁
𝑌
2

‖
2

}
‖𝑣𝑒𝑐(𝑍)‖2 

=
‖𝐴‖2

𝐹

2
‖(𝑋⨁𝑋) − (𝑌⨁𝑌)‖2‖𝑣𝑒𝑐(𝑍)‖2𝑒

max{‖
𝑋
2

⨁
𝑋
2

‖
2,   

‖
𝑌
2

⨁
𝑌
2

‖
2

}
 

  

=
‖𝐴‖2

𝐹

2
‖(𝑋 − 𝑌)(𝑋 − 𝑌)−1((𝑋⨁𝑋) − (𝑌⨁𝑌))‖

2
‖𝑣𝑒𝑐(𝑍)‖2𝑒

max{‖
𝑋
2

⨁
𝑋
2

‖
2,   

‖
𝑌
2

⨁
𝑌
2

‖
2

}
 

  

=
‖𝐴‖2

𝐹

2
‖(𝑋 − 𝑌)−1((𝑋⨁𝑋) − (𝑌⨁𝑌))‖

2
‖𝑣𝑒𝑐(𝑍)‖2𝑒

max{‖
𝑋
2

⨁
𝑋
2

‖
2,   

‖
𝑌
2

⨁
𝑌
2

‖
2

}
‖𝑋 − 𝑌‖2. 

Finally, we have 

‖𝐹𝑋
′ − 𝐹𝑌

′ ‖𝐹 ≤ 𝐾‖𝑋 − 𝑌‖2, where 𝐾 =
‖𝐴‖2

𝐹

2
‖(𝑋 − 𝑌)−1((𝑋⨁𝑋) −

(𝑌⨁𝑌))‖
2

𝑒
max{‖

𝑋

2
⨁

𝑋

2
‖

2,   
‖

𝑌

2
⨁

𝑌

2
‖

2
}
,  which ends the proof of the theorem. 

Theorem 2 

Suppose that Equation (1) has a nonsingular solution 𝑋𝑠ol. and the mapping 𝐹
𝑋sol.
′  is invertible. 

Then, there exists a closed ball 𝑃 = 𝐵𝜖(𝑋sol.)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, such that for all 𝑋0 ∈ 𝑃,  the sequence 𝑋𝑘 

generated by Newton’s method (NM) converges quadratically to the solution 𝑋sol.. 
Proof: Let 𝜓(𝑋) = 𝑋 − (𝐹𝑋

′ )−1𝐹(𝑋). Applying Taylor’s formula for Banach space in Guo (2009), 

we have  

lim
‖𝑍‖→0

‖𝜓(𝑋sol. + 𝑍) − 𝜓(𝑋sol.)‖

‖𝑍‖
 

= lim
‖𝑍‖→0

(‖𝑋sol. + 𝑍 − (𝐹
𝑋sol.+𝑍
′ )

−1
𝐹(𝑋sol. + 𝑍) − (𝑋sol. − (𝐹

𝑋sol.
′ )

−1
𝐹(𝑋sol.))‖ × ‖𝑍‖−1) 

= lim
‖𝑍‖→0

 (‖𝑍 + ((𝐹
𝑋sol.
′ )

−1
𝐹(𝑋sol.)) − (𝐹

𝑋sol.+𝑍
′ )

−1
𝐹(𝑋sol. + 𝑍)‖ × ‖𝑍‖−1) 

  

= lim
‖𝑍‖→0

 (‖𝑍 + ((𝐹
𝑋sol.
′ )

−1
𝐹(𝑋sol.)) − (𝐹

𝑋sol.+𝑍
′ )

−1
[𝐹(𝑋sol.) + 𝐹

𝑋sol.
′ (𝑍) +

1

2
𝐹

𝑋sol.
′′ (𝑍2) +

⋯ ]‖ × ‖𝑍‖−1)=0. 

This implies that the Fréchet derivative of 𝜓 at 𝑋sol. is zero. Applying Ostrowski Theorem 

(Ortega 1972) and Theorem 1, it can be proved that the matrix sequence {𝑋𝑘} ∈ 𝑃 produced by 

NM algorithm converges quadratically to the solution 𝑋sol.. In other words, {𝑋𝑘} → 𝑋sol. as 

𝑘 → ∞. 

Let 𝛽 ≔ ‖(𝐹
𝑋sol.
′ )

−1
‖. From Lemma 1, we choose 0 < 𝛾 < 𝛽−1. It follows that 

‖(𝐹𝑋
′ )−1‖ =

𝛽

1 − 𝛽𝛾
. 

 

From Theorem 1, we have  
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‖𝐹𝑋𝑘
′ (𝑋𝑘 − 𝑋𝑠ol.) − 𝐹

𝑋sol.
′ (𝑋𝑘 − 𝑋𝑠ol.)‖ ≤ 𝐾‖𝑋𝑘 − 𝑋sol.‖

2
.  

Similarly, employing Newton’s Leibniz formula and Theorem 1, it follows that  

‖𝐹𝑋𝑘
′ (𝑋𝑘 − 𝑋𝑠ol.) − 𝐹

𝑋sol.
′ (𝑋𝑘 − 𝑋𝑠ol.)‖ 

= ‖∫ (𝐹(1−𝑡)𝑋sol.+𝑡𝑋𝑘

′ − 𝐹
𝑋sol.
′ )

1

0

(𝑋𝑘 − 𝑋𝑠ol.)𝑑𝑡‖ 

≤ ‖𝑋𝑘 − 𝑋𝑠ol.‖ ∫ ‖𝐹(1−𝑡)𝑋sol.+𝑡𝑋𝑘

′ − 𝐹
𝑋sol.
′ ‖

1

0

𝑑𝑡 

≤ 𝐾/2‖𝑋𝑘 − 𝑋𝑠ol.‖
2
. 

From the matrix sequence produced by NM for Equation (1), it follows that  

‖𝑋𝑘 − 𝑋𝑠ol.‖ = ‖𝑋𝑘 − (𝐹′
𝑋𝑘

)
−1

(𝐹(𝑋𝑘)) − 𝑋𝑠ol.‖ 

= ‖(𝐹′
𝑋𝑘

)
−1

𝐹′
𝑋𝑘

(𝑋𝑘 − 𝑋𝑠ol.) − 𝐹(𝑋𝑘)‖ 

= ‖(𝐹′
𝑋𝑘

)
−1

(𝐹′
𝑋𝑘

(𝑋𝑘 − 𝑋𝑠ol.) − 𝐹
𝑋sol.
′ (𝑋𝑘 − 𝑋𝑠ol.)

− (𝐹(𝑋𝑘) − 𝐹(𝑋sol.) − 𝐹
𝑋sol.
′ (𝑋𝑘 − 𝑋𝑠ol.)))‖ 

≤ ‖(𝐹′
𝑋𝑘

)
−1

‖ ‖𝐹′
𝑋𝑘

(𝑋𝑘 − 𝑋𝑠ol.) − 𝐹
𝑋sol.
′ (𝑋𝑘 − 𝑋𝑠ol.)‖

+ ‖(𝐹(𝑋𝑘) − 𝐹(𝑋sol.) − 𝐹
𝑋sol.
′ (𝑋𝑘 − 𝑋𝑠ol.))‖ 

≤
𝛽𝐾

1 − 𝛽𝛾
‖𝑋𝑘 − 𝑋𝑠ol.‖

2
+

𝛽𝐾

2(1 − 𝛽𝛾)
‖𝑋𝑘 − 𝑋𝑠ol.‖

2
= 𝑀‖𝑋𝑘 − 𝑋𝑠ol.‖,2 

where  𝑀=
3𝛽𝐾

2(1−𝛽𝛾)
. Hence, lim

𝑘→∞
𝑋𝑘 = 𝑋𝑠ol.. 

This marks the end of the proof of the theorem. 

 

Newton’s method is among the powerful 

methods involved in solving equations of the 

form ℱ(𝑋) = 0. Also, in some cases it may 

give better convergence by reducing the 

number of iterative steps when incorporated 

with line searches depending on the nature of 

the problem (Kim 2000, Higham and Kim 

2001). Seo and Kim (2014) employed relaxed 

Newton’s method to solve a matrix polynomial 

equation and obtained relatively quicker 

convergence as compared to that of pure 

Newton’s method. 

 A new algorithm is provided which is a 

combination of pure Newton’s method and 

fixed point method (CPNFP). Unlike in pure 

NM method in which solving Newton’s step 

involves computation of Kronecker product, 

CPNFP method solves Newton’s step by a 

fixed point method incorporating composite 

function.  

Now, a new CPNFP method is provided for 

solving an approximate solution for Equation 

(1) as follows: 

Let 𝑍𝑖: = 𝐺(𝑍𝑖 , 𝑋𝑖) = 𝐴∗𝑒
𝑋𝑖
2 𝑍𝑒

𝑋𝑖
2 𝐴 − 𝐹(𝑋𝑖). 

Step 1: Given matrices, 𝑍0, 𝑋0. 

Step 2: 𝑍𝑖: = 𝐺(𝑍𝑖−1, 𝑋𝑖−1) ; for all 𝑖 =
1, 2, ⋯ 

Step 3: 𝑍𝑖+1: = 𝐺(𝑍𝑖 , 𝑋𝑖) 

Step 4: 𝑋𝑘 = 𝑋𝑖−1 + 𝑍𝑖+1 

Step 5: Check if ‖𝐹(𝑋𝑘)‖F ≤ 𝑛. eps  or 

‖𝑍𝑖+1 − 𝑍𝑖‖𝐹 ≤ 𝑛. eps  , where 𝑛  is the 

size of matrix 𝐴 and eps= 2.22× 10-16,  

otherwise go to Step 2. 

Step 6: Display the approximate solution 𝑋. 
 

Fixed point method (FPM) 

Gao (2016) provided a fixed point method for 

Equation (1) as follows: 

Given 𝑋0 ∈ 𝑆 = [𝐼, 2𝐼] , 𝑋𝑖 = 𝐼 + 𝐴∗𝑒𝑋𝐴, for 



Chacha - Elegant Iterative Methods for Solving a Nonlinear Matrix Equation 𝑋 − 𝐴∗𝑒𝑋𝐴 = 𝐼 

1038 

all 𝑖 = 1,2, ⋯ 
In this work, a composite function is 

incorporated in the fixed point iteration to 

accelerate the convergence and reduce 

computational time. 

Let 𝑋𝑖: = 𝐻(𝑋𝑖) = 𝐼 + 𝐴∗𝑒𝑋𝑖𝐴, then the new 

matrix sequence is produced by the sequence  

𝑋𝑖+1: = 𝐻 ∘ 𝐻(𝑋𝑖) = 𝐻(𝐻(𝑋𝑖)). We now have 

the modified fixed point method for equation 

(1). 

 

Modified fixed point method (MFP) for 

Equation (1) 

Step 1: Given matrix 𝐴, choose 𝑋0 ∈ 𝑆 =
[𝐼, 2𝐼] 

Step 2: 𝑋𝑖: = 𝐻(𝑋𝑖); for all 𝑖 = 0,1, 2, ⋯ 

Step 3: 𝑋𝑖+1: = 𝐻(𝐻(𝑋𝑖)) 

Step 4: Check if ‖𝐹(𝑋𝑖)‖F ≤ 𝑛. eps   or  

‖𝑋𝑖+1 − 𝑋𝑖‖𝐹 ≤ 𝑛. eps  , where 𝑛  is the 

size of matrix 𝐴 and eps= 2.22× 10−16,  

otherwise go to Step 2. 

Step 6: Display the approximate solution 𝑋. 
 

Theorem 3 

Let 𝐶 ∈ ℂ𝑛×𝑛 be an ordered set such that 

every pair 𝑋, 𝑌 ∈ 𝐶 = [𝐼, 2𝐼]  has lower and 

upper bound. Moreover, suppose that 

𝑑(𝑋, 𝑌) = ‖𝑋 − 𝑌‖ is a metric on 𝐶 such that 

(𝐶, 𝑑)  is a complete metric space. If 𝐻  is 

continuous monotone and there exists 𝛿 ∈
(0, 1)  such that 𝑑(𝐻(𝐻(𝑋)), 𝐻(𝐻(𝑌))) ≤

𝛿𝑑(𝑋, 𝑌), where 𝑋 ≥ 𝑌, then 𝐻 has a fixed 

point 𝑋𝑠ol.,  where 𝐻(𝑋) = 𝐼 + 𝐴∗𝑒𝑋𝐴  and 

𝛿 = ‖𝐴‖4𝑒2‖𝑋‖. 
Proof: Let 𝐻(𝑋) = 𝐼 + 𝐴∗𝑒𝑋𝐴   be 

continuous monotone and suppose that the pair 

𝑋, 𝑌 ∈ 𝐶 = [𝐼, 2𝐼]  is well ordered. We have 

that, 

 ‖𝐻(𝐻(𝑋)),   𝐻(𝐻(𝑌))‖ 

= ‖𝐴∗𝑒(𝐼+𝐴∗𝑒𝑋𝐴)𝐴 − 𝐴∗𝑒(𝐼+𝐴∗𝑒𝑌𝐴)𝐴‖ 

≤ ‖𝐴‖2‖𝑒(𝐼+𝐴∗𝑒𝑋𝐴) − 𝑒(𝐼+𝐴∗𝑒𝑌𝐴)‖ 

= ‖𝐴‖2‖𝑒𝐻(𝑋) − 𝑒𝐻(𝑌)‖ 

≤ ‖𝐴‖2‖𝐻(𝑋) − 𝐻(𝑌)‖𝑒max{‖𝐻(𝑋)‖,   ‖𝐻(𝑌)‖} 

≤ ‖𝐴‖4‖𝑒𝑋 − 𝑒𝑌‖𝑒max{‖𝐻(𝑋)‖,   ‖𝐻(𝑌)‖} 

≤ ‖𝐴‖4𝑒2‖𝑋‖‖𝑋 − 𝑌‖. 

Thus, the desired result 

𝑑(𝐻(𝐻(𝑋)), 𝐻(𝐻(𝑌))) ≤ 𝛿𝑑(𝑋, 𝑌) , where 

𝛿 = ‖𝐴‖4𝑒2‖𝑋‖ is achieved. 

Consequently, from Banach fixed point 

theorems (Ran and Reurings 2003, Sawangsup 

and Sintunavarat 2017), 𝐻 has a unique fixed 

point. 

It is easy to see that  lim
𝑖→∞

𝑋𝑖 = 𝑋𝑠ol.. 

 

Results and Discussion 

In this section, numerical tests are used to 

illustrate the effectiveness of the suggested 

algorithms in comparison with the previously 

suggested algorithm to solve Equation (1). In 

Example 1, a 4 × 4  matrix 𝐴 is provided 

and employed four algorithms proposed to 

compute the solution of Equation (1). The 

summary of results is presented in Table 1 and 

Table 2.  In Example 2, 13 matrices with 

different sizes (𝑛) are provided and employed 

four algorithms to find the solution of Equation 

(1). The summary of results is presented in 

Table 3. The experiments were done in 

MATLAB R2015a and the loops were 

terminated whenever the error ‖𝐹(𝑋)‖𝐹 ≤
𝑛. eps, where 𝑛 is the matrix size and eps =
2.22 × 10−16. 

Example 1: Consider Equation (1) with matrix  𝐴 =
1

8
[

1 0
0 0
0 0

    
0 1
1 1
1 1

  1 0 0   1  

]  and an initial 

solution 𝑋0 = 1.2𝐼.  Then, employ NM, CNMFP, FP and MFP algorithms to compute the 

solution  𝑋 of Equation (1). 

The solution 𝑋sol.=[

1.1047 0
0 0.1047
0 0

    
0 0.1047

0.1047 0
1 1

  0.1047     0         0          0.1047  

] for all the four 

algorithms in four decimal places. 
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Table 1: Results summary for Example 1, 𝑋0 = 1.2𝐼. 
Method Iteration error CPU time in seconds 

NM 4 1.1444 ×  10−16 0.0360 

CNMFP 18 2.9894 ×  10−16 0.0631 

FP 20 2.6200 ×  10−16 0.0816 

MFP 10 2.6200 ×  10−16 0.0398 

 

Remark 1 

Based on results provided in Table 1, NM and 

MFP algorithms converge faster as compared 

to FP and CNMFP algorithms. This may not be 

the case when we consider large matrix size. 

Thus, this is valid for small matrix sizes. 

 

Table 2: Results summary for Example 1, 𝑋0 = 2𝐼. 
Method Iteration error CPU time in seconds 

NM 6 1.1388 ×  10−16 0.0614 

CNMFP 20 1.2413 ×  10−16 0.0601 

FP 23 5.6200 ×  10−16 0.0746 

MFP 12 1.3900 ×  10−16 0.0422 

 

Remark 2 

Based on results provided in Table 2, it is 

revealed that the choice of initial guess affects 

the performance of all algorithms. Newton’s 

method is mostly affected as compared to the 

remaining algorithms. It also implies that the 

solution of Equation (1) is relatively closer to 

1.2𝐼 than 2𝐼. 

Example 2: Consider real symmetric matrix 

𝐴 =
rand(𝑛)+ (rand(𝑛))𝑇

400
 with 𝑋0 = 1.2𝐼. Then, 

four algorithms are employed to compute the 

approximate solution of Equation (1) for matrix 

sizes  𝑛 =
10, 15, 20, 25, 30, 40, 45, 50, 60, 70, 80, 90  and 

100. 
A summary of results for Example 2 is 

presented in Table 3. 

 

Table 3: A summary of results for Example 2 

𝒏  NM CPNMFP FP MFP 

IT CPU(Sec.) IT CPU(Sec.) IT CPU(Sec.) IT CPU(Sec.) 

10 4 0.3849 6 0.0308 6 0.0297 3 0.0227 

15 4 1.7455 7 0.0726 6 0.0337 3 0.0314 

20 4 6.0246 8 0.1574 7 0.0570 4 0.0551 

25 4 13.3337 8 0.1650 7 0.0768 4 0.0649 

30 4 28.3417 8 0.3102 8 0.1906 4 0.1061 

40 4 86.2657 9 0.5728 9 0.2141 5 0.2097 

45 4 139.0020 10 0.6397 10 0.2784 5 0.2471 

50 4 203.1535 10 0.7650 10 0.3055 5 0.3831 

60 4 432.8035 10 0.9259 12 0.5095 6 0.4534 

70 4 600.7411 12 2.3360 13 0.7429 7 0.7425 

80 4 879.3148 13 2.1954 15 1.0697 7 0.8743 

90 4 1781.3273 15 3.2106 16 1.4201 8 1.2598 

100 4 3526.7338 16 4.0318 18 1.9152 9 1.7888 

 

IT stands for iterations 

Remarks 3: Results in Table 3 reveal that NM 

method is the worst when compared to the 

remaining methods in terms of CPU time. This 

is due to the computation of tensor product 

when calculating Newton’s step at every 

iterative step. Modified fixed point method has 

the best performance in terms of CPU time. 
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Conclusion 

NM, CPNMFP, FP and MFP iterative 

methods have been proposed for solving 

Equation (1). It is revealed that NM method 

has the best performance in terms of CPU time 

for small matrix sizes. On the other hand, NM 

method has the worst CPU performance when 

large matrix sizes are involved in Equation (1). 

CPNMFP and MFP iterative methods are very 

effective when dealing with large matrix sizes. 

MFP method has the best performance in terms 

of CPU time when matrix  𝐴  in Equation (1) 

is very large (size (𝐴) ≥ 10). 
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