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Abstract 

Bayesian estimations have the advantages of taking into account the uncertainty of all parameter 

estimates which allows virtually the use of vague priors. This study focused on determining the 

quantile range at which optimal hyperparameter of normally distributed data with vague 

information could be obtained in Bayesian estimation of linear regression models. A Monte Carlo 

simulation approach was used to generate a sample size of 200 data-set. Observation precisions 

and posterior precisions were estimated from the regression output to determine the posterior 

means estimate for each model to derive the new dependent variables. The variances were divided 

into 10 equal parts to obtain the hyperparameters of the prior distribution. Average absolute 

deviation for model selection was used to validate the adequacy of each model. The study revealed 

the optimal hyperparameters located at 5th and 7th deciles. The research simplified the process of 

selecting the hyperparameters of prior distribution from the data with vague information in 

empirical Bayesian inferences.  
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Introduction 

In statistics, Bayesian linear regression is an 

approach to linear regression in which the 

statistical analysis is undertaken within the 

context of Bayesian inference. The Bayesian 

approach provides a complete paradigm for 

both statistical inference and decision making 

under certainty. Bayesian methods make it 

possible to incorporate scientific hypothesis in 

the analysis (by means of prior distribution) 

and may be applied to problems whose 

structures are too complex for conventional 

methods to handle. While the objectivity of 

frequentist statistics has been obtained by 

disregarding any prior knowledge of the 

process being measured, Bayesian approach 

provides a mathematical rule explaining how 

existing beliefs can be changed in the light of 

new evidence. In other words, it allows 

scientists to combine new data with their 

existing knowledge or prior.  Researchers 

consider Bayesian approach to be superior to 

frequentist approach through the application of 

prior information. The argument is that the 

introduction of prior distributions violates the 

objective view point of convectional statistics 

(Lunn et al. 2013). 

This study was to investigate the claim of 

Atkinson et al. (1993) that prior distribution 

could be suggested by data to reduce the 

uncertainty around the determination of 

Bayesian prior and to use the prior to determine 
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the superiority of Bayesian regression analysis 

over frequentist regression analysis. Raftery et 

al. (1997) considered the problems of 

accounting for model uncertainty in linear 

regression model. Inferences drawn from a 

single selected model ignores model 

uncertainty, and thus leads to underestimation 

of uncertainty when making inferences about 

quantities of interest. A Bayesian solution to 

this problem involves averaging over all 

possible models when making inferences about 

quantities of interest. Model uncertainty can be 

ignored when inferences are conditioned on a 

single selected model, and this can lead to 

underestimation of conclusions drawn about 

quantities of interest.  

This research work aimed to determine the 

quantile range at which optimal 

hyperparameters could be obtained when 

Bayesian estimation is employed to solve 

regression analysis of normally distributed data 

with vague information. Agresti (2006) 

examined Bayesian inference for categorical 

data analysis, with primary emphasis on 

contingency table analysis. Several applications 

of Bayesian analyses have yielded evidence 

that some hyperparameters indeed are much 

important. Through minimizing an empirical 

error criterion, Adankon and Cheryl (2009) 

used a gradient descent method to 

automatically select hyperparameter values for 

the least squares support vector machine.   

Authors Bergstra and Bengio (2012), Hutter et 

al. (2013), and Holder et al. (2021) worked on 

speeding up automatic selection of 

hyperparameter value for neural work. Liseo 

and Macaro (2013) and Petrone et al. (2014) 

considered the problem of deriving objective 

priors for the causal/ stationary autoregressive 

model of order p. Consonni et al. (2018) 

provided review of prior distributions for 

objective Bayesian analysis. Olubusoye and 

Okonkwo (2012) explored the application of 

Bayes theory to Normal Linear regression 

model in choosing prior distributions for the 

parameters of interest in the selection of 

variables in the case of reduced models. 

However, not much work has been done on 

determining the range of obtaining the optimal 

hyperparameter in Bayesian estimation of 

linear regression models.  Furthermore, this 

study opts to determine the optimal quantile 

range of the prior parameters and determine the 

prior parameters from ordinary least squares 

(OLS) model confidence intervals. 

 

Materials and Methods 

Baye’s Theorem for the regression model 

Baye’s theorem is constantly summarized by  

Posterior ∝ prior × likelihood               (1) 

Hence, there is a need to determine the prior 

and the likelihood distribution for the model. 

The joint likelihood is factored into a product 

of two individual likelihood of 𝛼 and 𝛽. It is 

simplified as 

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑𝑠𝑎𝑚𝑝𝑙𝑒 (𝛼𝑥, 𝛽) ∝

𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑𝑠𝑎𝑚𝑝𝑙𝑒(𝛼𝑥) × 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑𝑠𝑎𝑚𝑝𝑙𝑒(𝛽)  

                                                                    (2) 

where; 

𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑𝑠𝑎𝑚𝑝𝑙𝑒(𝛽) ∝  𝑒− 1

2𝜎2/𝑠𝑠𝑥
(𝛽 − 𝐵)2  

                                                                     (3) 

𝑠𝑠𝑥  denotes sum of squares of the independent 

variable 

and  

𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑𝑠𝑎𝑚𝑝𝑙𝑒(𝛼𝑥) ∝  𝑒− 1

2𝜎2/𝑛
(𝛼𝑥 − 𝐴𝑥)2   

                                                                     (4) 

The likelihood is independent, the likelihood of 

the slope 𝛽 has a normal shape with mean B 

and the variance 
𝜎2

𝑆𝑆𝑥
. Similarly, the likelihood 

of 𝛼𝑥 also has normal shape with mean 𝐴𝑥 and 

variance  
𝜎2

𝑛
. 

If the joint likelihood is multiplied by joint 

prior, it is proportional to the joint posterior. 

Using normal independent prior for each 

parameter, the joint prior of the two parameters 

is the product of the two individual priors. 

𝑔(𝑎𝑥, 𝛽) = 𝑔(𝑎𝑥) × 𝑔(𝛽)                         (5) 

The joint prior follows a normal distribution. 

The joint posterior is proportional to the joint 

prior multiplied by the joint likelihood. 

𝑔(𝑎𝑥, 𝛽/𝑑𝑎𝑡𝑎)  ∝   𝑔(𝑎𝑥, 𝛽) ×  likelihood 

sample (𝑎𝑥 , 𝛽)                                      (6) 
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Where the dataset is the set of ordered pair 

(𝑥𝑖 , 𝑦𝑖), …, (𝑥𝑛 , 𝑦𝑛)  

Regression analysis was run for a data-set, the 

standard errors obtained from the linear 

regression for the output from the parameters 

𝛽0 − 𝛽4 were used to obtain the lower and 

upper limits for the prior variance required for 

the analysis using chi-square with (n-1) degree 

of freedom.  
(𝑛−1)𝑠2

𝜒𝛼/2,,𝑛−1
2  

           and          
(𝑛−1)𝑠2

𝜒1−𝛼/2,,𝑛−1
2        

respectively                                         (7) 

The confidence interval for each parameter is 

used to determine the prior mean range 

𝛽̅𝑠 ±  𝑡∝/2,n-2 ×  𝑆𝐸                              (8) 

The difference between lower and upper 

intervals obtained above are divided into 9 grid 

points. Each pair of the points is the mean and 

variance for the prior distribution These grid 

points are referred to as the hyperparameters of 

the prior distribution. 

𝛽~ N(𝑚𝛽,  𝑠𝛽
2)                                    (9) 

𝑚𝛽,  𝑠𝛽
2  denotes the hyperparameters of the 

normally distributed priors. 

The likelihood function is of the form: 

𝑋̅/𝛽 ~ 𝑁(𝛽,
𝜎2

𝑛
 )                                  (10) 

where 𝑋̅ is the average of 𝑋𝑖 ,…, 𝑋𝑛.    

The likelihood of the regression parameters 

(𝛽0 − 𝛽4) were estimated, for the intercept 

(𝛽0), MSE is the mean square error from the 

regression analysis and the sample size n were 

used, while 𝑆𝑆𝑋1 , 𝑆𝑆𝑋2, 𝑆𝑆𝑋3 and 𝑆𝑆𝑋4 are 

sum of squares of the independent variables 

(𝑋𝑠), 𝑠 = 1, … , 4,  respectively and the mean 

square error obtained were used to determine 

the likelihood of 𝛽1 , 𝛽2,  𝛽3,  and  𝛽4 . 

Likelihood of 𝛽0 =  
𝑀𝑆𝐸

𝑛
                     (11) 

Likelihood of 𝛽1  =  
𝑀𝑆𝐸

𝑆𝑆𝑋1
                    (12) 

Likelihood of 𝛽2  =  
𝑀𝑆𝐸

𝑆𝑆𝑋2
                     (13) 

Likelihood of 𝛽3  =  
𝑀𝑆𝐸

𝑆𝑆𝑋3
                    (14) 

Likelihood of 𝛽4  =  
𝑀𝑆𝐸

𝑆𝑆𝑋4
                    (15) 

The posterior distribution: 

𝛽 ∕ 𝑋 ∼ 𝑁(𝑚𝜄
𝛽,   (𝑆𝜄

𝛽)
2

)                   (16) 

The posterior precisions of the regression 

parameters 𝛽0 − 𝛽4 are the prior precisions 

plus the observation precision for the 

parameters. 

For   𝛽0,       
1

(𝑆𝜄
𝛽0)

2    =     
1

𝑆𝛽0
2   +  

𝑛

𝜎2           (17) 

For   𝛽1,       
1

(𝑆𝜄
𝛽1)

2    =     
1

𝑆𝛽1
2   +  

𝑆𝑆𝑋1

𝜎2         (18) 

For   𝛽2,       
1

(𝑆𝜄
𝛽1)

2    =     
1

𝑆𝛽2
2   +  

𝑆𝑆𝑋2

𝜎2         (19) 

For   𝛽3,       
1

(𝑆𝜄
𝛽1)

2    =     
1

𝑆𝛽3
2   +  

𝑆𝑆𝑋3

𝜎2        (20) 

For   𝛽4,       
1

(𝑆𝜄
𝛽1)

2    =     
1

𝑆𝛽4
2   +  

𝑆𝑆𝑋4

𝜎2        (21) 

The Bayes estimates of  𝛽0̂ −  𝛽4̂  were 

obtained using the following equations: 
𝑃𝑟𝑖𝑜𝑟 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
×  𝑃𝑟𝑖𝑜𝑟 𝑚𝑒𝑎𝑛 +

  
𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑃𝑟𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 
 ×   𝑂𝐿𝑆 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒      (22) 

For    𝛽0, ,   

1

𝑆2
𝛽0

1

𝑆2
𝛽0

 +  
𝑛

𝜎2 
 ×   𝑃𝑀𝛽0

+ 
𝑛

𝜎2

 
1

𝑆2
𝛽0

 +  
𝑛

𝜎2 
 ×

 𝛽0 𝑂𝐿𝑆 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒                                     (23) 

For 𝛽1, ,           

1

𝑆2
𝛽1

1

𝑆𝛽1
2   +  

𝑆𝑆𝑋1
𝜎2

 ×   𝑃𝑀𝛽1
+

 
𝑆𝑆𝑋1

𝜎2

 
1

𝑆𝛽1
2   +  

𝑆𝑆𝑋1
𝜎2

 ×  𝛽1 𝑂𝐿𝑆 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒.            (24) 

For 𝛽2, ,          

1

𝑆2
𝛽2

1

𝑆𝛽2
2   +  

𝑆𝑆𝑋2  

𝜎2

 × 𝑃𝑀𝛽2
+

 
𝑆𝑆𝑋2

𝜎2

 
1

𝑆𝛽2
2   +  

𝑆𝑆𝑋2
𝜎2

 ×  𝛽2 𝑂𝐿𝑆 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒.              (25) 

 For 𝛽3, ,           

1

𝑆2 𝛽3
1

𝑆𝛽3
2   +  

𝑆𝑆𝑋3
𝜎2

 ×  𝑃𝑀𝛽3
+

 
𝑆𝑆𝑋3

𝜎2

 
1

𝑆𝛽3
2   +  

𝑆𝑆𝑋3
𝜎2

 ×  𝛽3 𝑂𝐿𝑆 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒.             (26) 

For 𝛽4, ,             

1

𝑆2
𝛽4

1

𝑆𝛽4
2   +  

𝑆𝑆𝑋4
𝜎2

 ×  𝑃𝑀𝛽4
+

 
𝑆𝑆𝑋4

𝜎2

 
1

𝑆𝛽4
2   +  

𝑆𝑆𝑋4
𝜎2

 ×  𝛽4 𝑂𝐿𝑆 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒            (27) 
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Simulation study 

Data were generated using the Monte Carlo 

approach for the analysis to determine the 

optimal hyperparameters and the optimal 

quantile range. 

Let 𝑦𝑖  and 𝑥𝑖 denote the simulated data of the 

dependent and k explanatory variables,  

𝑥𝑖1, … , 𝑥𝑖𝑘, 

 for I = 1…, n. 

The general multiple linear regression model is 

given by: 

𝑦𝑖 =  𝛽0 + 𝛽1𝑥𝑖1 +𝛽2𝑥𝑖2 +, …, + 𝛽𝑘𝑥𝑖𝑘 + 𝜀𝑡  

                                                           (28) 

 Where k = 4 and 10000 replicas of random 

data with sample size 200 were simulated for 

the four independent variables  with 𝑦 

generated from a linear regression model with 

normally distributed error term. The parameters 

used for the simulation were chosen arbitrarily, 

given as: 

𝛽0  = 0.7, 𝛽1 = 0.4, 𝛽2 = 0.5, 𝛽3 = 0.1, 𝛽4 =
0.2     

𝑥1~ 𝑁(4, 0.3), 𝑥2~ 𝑁(2, 0.1), 𝑥3~ 𝑁(5, 3), and 

𝑥4~ 𝑁(3, 1) and 𝜀~ 𝑁(0, 1),   

Regression analysis was run on each set of the 

simulated data, intervals for the prior mean and 

prior variance of the parameters determined 

were divided into 9 grid points, each pair of the 

grid points is therefore used to determine the 

posterior Bayesian estimates for the 

determination of the optimal hyperparameter. 

The average absolute deviation for the 

posterior estimates for each of 9 grid points of 

the models were computed and the model with 

the least AAD is chosen as the best model with 

the corresponding hyperparameters as the 

optimal hyperparameters. The process was 

repeated for the remaining 9999 data set and 

the optimal hyperparameters for the 10000 data 

set were considered to determine the optimal 

quantile range. The average absolute deviated 

was computed as 
1

𝑁
 ∑ |𝑌𝑖,,𝑗,𝑘 − 𝑌̂𝑖,𝑗,𝑘|𝑁,𝑆,𝑇

𝑖,𝑗,𝑘=1                         (29) 

where N is the sample size; S is the number of 

grid points; T is the number of simulations;  𝑌𝑖 

is the simulated dependent variables and 𝑌̂𝑖 is 

the estimated dependent variables derived from 

posterior estimates. 

 

Results and Discussion 

Linear regression analysis  

The ordinary least squares parameters’ 

estimates obtained from the linear regression 

analysis of each set of simulated data are 

presented in Table 1. 

 

Table 1: Summary of linear regression outputs 

Regression statistics 

Multiple R 0.6523 

R square  0.8836 

Adjusted R square  0.7106 

Standard error  0.8529 

Observation 200 

 Df SS MS F Significance F 

Regression 4 50.3721 38.3386 38.1944 3.3372E-11 

Residual 195 93.3560 0.9032   

Total 199 144.2281    

 Coefficients Standard error t statistics P- value Lower 95% Upper 95% 

Intercept 0.4814 0.03672 1.2638 0.1946 0.4089 0.5538 

𝑥1 0.2409 0.2778 0.6582 0.3671 -0.3069 0.7887 

𝑥2 0.5275 0.3415 3.0945 0.9923 -0.1459 1.20094 

𝑥3 0.7423 0.1892 0.4789 0.2514 0.3692 1.1154 

𝑥4 0.3364 0.4096 4.1139 0.8356 -0.4713 1.14413 
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The estimation of the prior variances and prior 

precisions for the regression parameters 𝛽0 − 

𝛽4 

The standard errors of the regression 

parameters 𝛽0 − 𝛽4 from the regression 

analysis are 0.03672, 0.2778, 0.3415, 0.1892, 

and 0.4096, respectively. The chi square values 

for 𝜒𝛼/2
2  and 𝜒1−𝛼/2

2  were obtained from the 

statistical table as 161.826 and 239.960, 

respectively for sample size 200. These values 

were used to obtain the lower and upper limits 

of the prior variances for the regression 

parameters 𝛽0 − 𝛽4.  

Precision measures statistical variability, 𝐷0  

were obtained as the differences between the 

limits divided by 10 for the parameters 𝛽0 − 

𝛽4. The 𝐷0 and  the incremental values added 

to the lower limit of each of the prior variance 

(LL) to obtain 𝐷𝑖  and where i = 1 to 9. The 

prior precision obtained is the reciprocal of the 

prior variance. Tables 2 to 6 show the results of 

prior variances, prior precisions for the 

parameter estimates for the 9 grid points. 

 

Table 2:  The prior variance and precision for the parameter estimate 𝜷𝟎 
 (𝑛 − 1)𝑠2

𝜒𝛼/2,,𝑛−1
2  

(𝑛 − 1)𝑠2

𝜒1−𝛼/2,,𝑛−1
2  

 

 

𝐷0 

 

 

𝐷𝑖 

Prior  

variance 

of 𝛽0 

Prior 

precision of 

𝛽0 

  N 200 0.00112 0.00166 0.000054 𝐷1 = 𝐿𝐿 +  𝐷0 0.001174 851.7887 

 𝑆 0.03672    𝐷2 =  𝐷1 +  𝐷0 0.001228 814.3322 

𝜒2
𝛼

2⁄
 161.826    𝐷3 =  𝐷2 + 𝐷0 0.001282 780.0312 

𝜒2
1−𝛼

2⁄
 239.960    𝐷4 =  𝐷3 + 𝐷0 0.001336 748.5029 

     𝐷5 =  𝐷4 + 𝐷0 0.00139 719.4244 

     𝐷6 =  𝐷5 + 𝐷0 0.001444 692.5207 

     𝐷7 =  𝐷6 + 𝐷0 0.001498 667.5567 

     𝐷8 =  𝐷7 + 𝐷0 0.001552 644.3298 

     𝐷9 =  𝐷8 +  𝐷0 0.001606 622.6650 

 

Table 3:  The prior variance and precision for the parameter estimate 𝜷𝟏 
 (𝑛 − 1)𝑠2

𝜒𝛼/2,,𝑛−1
2  

 

(𝑛 − 1)𝑠2

𝜒1−𝛼/2,,𝑛−1
2  

 

 

 

𝐷0 

 

 

𝐷𝑖 

Prior 

variance 

of 𝛽1 

Prior 

precision of 

𝛽1 

  N 200 0.06399 0.09490 0.003090 𝐷1 = 𝐿𝐿 +  𝐷0 0.06708 14.9075 

𝑆 0.2778    𝐷2 =  𝐷1 +  𝐷0 0.07017 14.2511 

𝜒2
𝛼

2⁄
 161.826    𝐷3 =  𝐷2 + 𝐷0 0.07326 13.6500 

𝜒2
1−𝛼

2⁄
 239.960    𝐷4 =  𝐷3 + 𝐷0 0.07635 13.0975 

     𝐷5 =  𝐷4 + 𝐷0 0.07944 12.5881 

     𝐷6 =  𝐷5 + 𝐷0 0.08253 12.1168 

     𝐷7 =  𝐷6 + 𝐷0 0.08562 11.6795 

     𝐷8 =  𝐷7 + 𝐷0 0.08871 11.2726 

     𝐷9 =  𝐷8 +  𝐷0 0.09180 10.8932 
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Table 4: The prior variance and precision for the parameter estimate 𝜷𝟐 

  

(𝑛 − 1)𝑠2

𝜒𝛼/2,,𝑛−1
2  

 

 

(𝑛 − 1)𝑠2

𝜒1−𝛼/2,,𝑛−1
2  

 

 

 

 

𝐷0 

 

 

 

𝐷𝑖 

 

Prior 

variance of 

𝛽2 

 

Prior 

precision of 

𝛽2 

  N 200 0.0967 0.14341 0.00497 𝐷1 = 𝐿𝐿 +  𝐷0 0.1016 9.8425 

  𝑆 0.3415    𝐷2 =  𝐷1 + 𝐷0 0.1066 9.3809 

𝜒2
𝛼

2⁄
 161.826    𝐷3 =  𝐷2 + 𝐷0 0.1116 8.9606 

𝜒2
1−𝛼

2⁄
 239.960    𝐷4 =  𝐷3 + 𝐷0 0.1165 8.5837 

     𝐷5 =  𝐷4 + 𝐷0 0.1215 8.2305 

     𝐷6 =  𝐷5 + 𝐷0 0.1265 7.9051 

     𝐷7 =  𝐷6 + 𝐷0 0.1315 7.6045 

     𝐷8 =  𝐷7 + 𝐷0 0.1365 7.3260 

     𝐷9 =  𝐷8 +  𝐷0 0.1414 7.0721 

 

Table 5: The prior variance and precision for the parameter estimate 𝜷𝟑 
 (𝑛 − 1)𝑠2

𝜒𝛼/2,,𝑛−1
2  

 

(𝑛 − 1)𝑠2

𝜒1−𝛼/2,,𝑛−1
2  

 

 

 

𝐷0 

 

 

𝐷𝑖 

Prior 

variance 

of 𝛽3 

Prior 

precision of 

𝛽3 

  N 200 0.02968 0.04401 0.001433 𝐷1 = 𝐿𝐿 + 𝐷0 0.03111 32.1440 

  𝑆 0.1892    𝐷2 =  𝐷1 + 𝐷0 0.03254 30.7314 

𝜒2
𝛼

2⁄
 161.826    𝐷3 =  𝐷2 +  𝐷0 0.03397 29.4377 

𝜒2
1−𝛼

2⁄
 239.960    𝐷4 =  𝐷3 +  𝐷0 0.03541 28.2406 

     𝐷5 =  𝐷4 +  𝐷0 0.03685 27.1370 

     𝐷6 =  𝐷5 +  𝐷0 0.03827 26.1301 

     𝐷7 =  𝐷6 +  𝐷0 0.03971 25.1825 

     𝐷8 =  𝐷7 +  𝐷0 0.04114 24.3072 

     𝐷9 =  𝐷8 + 𝐷0 0.04257 23.9072 

 

Table 6: The prior variance and precision for the parameter estimate 𝛽4 
 (𝑛 − 1)𝑠2

𝜒𝛼/2,,𝑛−1
2  

 

(𝑛 − 1)𝑠2

𝜒1−𝛼/2,,𝑛−1
2  

 

 

 

𝐷0 

 

 

𝐷𝑖 

Prior 

variance of 

𝛽4 

Prior 

precision of 

𝛽4 

  N 200 0.13913 0.20631 0.00672 𝐷1 = 𝐿𝐿 +  𝐷0 0.1458 6.8587 

  𝑆 0.4096    𝐷2 =  𝐷1 +  𝐷0 0.1525 6.5573 

𝜒2
𝛼

2⁄
 161.826    𝐷3 =  𝐷2 + 𝐷0 0.1593 6.2775 

𝜒2
1−𝛼

2⁄
 239.960    𝐷4 =  𝐷3 + 𝐷0 0.1660 6.0240 

     𝐷5 =  𝐷4 + 𝐷0 0.1727 5.7904 

     𝐷6 =  𝐷5 + 𝐷0 0.1794 5.5741 

     𝐷7 =  𝐷6 + 𝐷0 0.1862 5.3705 

     𝐷8 =  𝐷7 + 𝐷0 0.1929 5.1840 

     𝐷9 =  𝐷8 +  𝐷0 0.1996 5.0100 

. 

The sum of the squares of the deviation 

obtained from the mean of the independent 
variables 𝑆𝑆𝑋1, 𝑆𝑆𝑋2, 𝑆𝑆𝑋3 and 𝑆𝑆𝑋4 from the 

simulated data were 32.19, 24.09, 414. 61 and 
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291.52, respectively. The observation 

precisions for 𝛽0, 𝛽1, 𝛽2, 𝛽3,  𝑎𝑛𝑑  𝛽4 were given 

by 
𝑛

𝜎2 =   221.4348  ,
𝑆𝑆𝑋1

𝜎2 =  
32.19

0.9032
=

35.6399 ,  
𝑆𝑆𝑋2

𝜎2 =  
24.09

0.9032
= 26.6718  ,  

𝑆𝑆𝑋3

𝜎2 =
414.61

0.9032
=   459.0456 and 

𝑆𝑆𝑋4

𝜎2  =
291.52

0.9032
=

  39.4595, respectively. 

 

The posterior precision for the regression 

parameters 

The prior precision of the regression 

parameters, the mean square error, the sum of 

squares of the deviation were substituted in 

Equations (17-21) to derive the posterior 

precision for the regression parameters. Table 7 

presents the posterior precisions of the 9 grid 

points. 

 
Table 7: The posterior precisions of the parameter estimates   

Posterior precision 

of 𝛽0, 

Posterior precision 

of 𝛽1, 

Posterior 

precision of 𝛽2, 

Posterior 

precision of 𝛽3, 

Posterior 

precision of 𝛽4, 

1073.2235 50.5474 36.5143 491.1896 46.3182 

1035.767 49.891 36.0527 489.7770 46.0168 

1001.466 49.2899 35.6325 488.4833 45.7370 

969.9377 48.7374 35.2555 487,2862 45.4835 

940.8592 48.2280 34.9023 486.1826 45.2499 

913.9555 47.7567 34.5769 485.1757 45.0336 

888.9915 47.3194 34.2763 484.2281 44.8300 

865.7646 46.9125 33.9978 483.3528 44.6435 

844.0990 46.5331 33.7439 482.9528 44.4695 

 

The unstandardized regression coefficients 

and the standard errors of the regression 

parameters 𝛽0, . . , 𝛽4, were obtained from the 

linear regression analysis statistics in Table 1, 

and the critical values of the parameters were 

also obtained from the Student’s statistical 

table. These values were substituted into 

Equation (8) to obtain the lower and upper 

limits for the prior means of the regression 

parameters. The prior means for the 9 grids 

points of the regression parameters are 

presented in Table 8 to Table 12. 

 

Table 8: The prior means of the parameter estimate 𝜷𝟎, 

LB UB 
𝐷0 =

𝑈𝐵 − 𝐿𝐵

10
 

𝐷𝑖 Prior mean of 𝛽0, 

0.4089 0.5538 0.01449 𝐷1 = 𝐿𝐵 + 𝐷0 0.42339 

   𝐷2 =  𝐷1 + 𝐷0 0.43788 

   𝐷3 = 𝐷2 + 𝐷0 0.45237 

   𝐷4 = 𝐷3 + 𝐷0 0.46686 

   𝐷5 = 𝐷4 + 𝐷0 0.48135 

   𝐷6 =  𝐷5 +  𝐷0 0.49584 

   𝐷7 = 𝐷6 + 𝐷0 0.51033 

   𝐷8 = 𝐷7 + 𝐷0 0.52482 

   𝐷9 = 𝐷8 +  𝐷0 0.53931 
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Table 9: The prior means of the parameter estimate 𝜷𝟏, 

LB UB 
𝐷0 =

𝑈𝐵 − 𝐿𝐵

10
 

𝐷𝑖 Prior mean of 𝛽1, 

-0.3069 0.7887 0.10956 𝐷1 = 𝐿𝐵 + 𝐷0 -0.19734 

   𝐷2 =  𝐷1 +  𝐷0 -0.08778 

   𝐷3 = 𝐷2 + 𝐷0  0.02178 

   𝐷4 = 𝐷3 + 𝐷0  0.13134 

   𝐷5 = 𝐷4 + 𝐷0  0.24090 

   𝐷6 =  𝐷5 +  𝐷0 0.35046 

   𝐷7 = 𝐷6 + 𝐷0 0.46002 

   𝐷8 = 𝐷7 + 𝐷0 0.56958 

   𝐷9 = 𝐷8 +  𝐷0 0.67914 

 

Table 10: The prior means of the parameter estimate 𝜷𝟐 
LB UB 

𝐷0 =
𝑈𝐵 − 𝐿𝐵

10
 

𝐷𝑖 Prior mean of 𝛽2, 

-0.1459 1.20094 0.13468 𝐷1 = 𝐿𝐵 + 𝐷0 -0.01122 

   𝐷2 =  𝐷1 +  𝐷0 0.12346 

   𝐷3 = 𝐷2 + 𝐷0 0.25814 

   𝐷4 = 𝐷3 + 𝐷0 0.39282 

   𝐷5 = 𝐷4 + 𝐷0 0.52750 

   𝐷6 =  𝐷5 +  𝐷0 0.66218 

   𝐷7 = 𝐷6 + 𝐷0 0.79686 

   𝐷8 = 𝐷7 + 𝐷0 0.93154 

   𝐷9 = 𝐷8 +  𝐷0 1.06622 

 

Table 11: The prior means of the parameter estimate 𝛽3 

LB UB 
𝐷0 =

𝑈𝐵 − 𝐿𝐵

10
 

𝐷𝑖  Prior mean of 

𝛽3 

0.3692 1.1154 0.07462 𝐷1 = 𝐿𝐵 + 𝐷0 0.44382 

   𝐷2 =  𝐷1 +  𝐷0 0.51844 

   𝐷3 = 𝐷2 +  𝐷0 0.59306 

   𝐷4 = 𝐷3 +  𝐷0 0.66768 

   𝐷5 = 𝐷4 +  𝐷0 0.74230 

   𝐷6 =  𝐷5 +  𝐷0 0.81692 

   𝐷7 = 𝐷6 +  𝐷0 0.89154 

   𝐷8 = 𝐷7 +  𝐷0 0.96616 

   𝐷9 = 𝐷8 +  𝐷0 1.04078 
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Table 12: The prior means of the parameter estimate 𝜷𝟒 
LB UB 

𝐷0 =
𝑈𝐵 − 𝐿𝐵

10
 

𝐷𝑖 Prior mean of 𝛽4, 

+-0.4713 1.14413 0.16154 𝐷1 = 𝐿𝐵 + 𝐷0 -0.30975 

   𝐷2 =  𝐷1 +  𝐷0 -0.14182 

   𝐷3 = 𝐷2 + 𝐷0  0.01332 

   𝐷4 = 𝐷3 + 𝐷0 0.17486 

   𝐷5 = 𝐷4 + 𝐷0 0.33640 

   𝐷6 =  𝐷5 +  𝐷0 0.49794 

   𝐷7 = 𝐷6 + 𝐷0 0.65948 

   𝐷8 = 𝐷7 + 𝐷0 0.82102 

   𝐷9 = 𝐷8 +  𝐷0 0.98256 

 

The prior precision, posterior precision, 

observation precision, prior mean and ordinary 

least squares estimate of the regression 

parameters 𝛽0, . . , 𝛽4, obtained were substituted 

into Equations (23-27) to derive the 9 Bayes 

estimates. 

The posterior mean (Bayes estimates) and OLS 

estimates of the regression parameters for the 9 

grids points are presented in Tables 13 and 14, 

respectively.  

 

 

Table 13:  The Bayes estimates of the parameters  

Bayes 

estimates of 𝛽0, 

Bayes 

estimates of 𝛽1 

Bayes 

estimates of 𝛽2 

Bayes 

estimates of 𝛽3 

Bayes estimates of  

𝛽4 

0.4353 0.1117 0.3821 0.72270 0.2434 

0.4471 0.1470 0.4224 0.72826 0.2682 

0.4587 0.1802 0.4598 0.73330 0.2858 

0.4770 0.2115 0.4947 0.73797 0.2942 

0.4814 0.2409 0.5275 0.74232 0.3364 

0.4923 0.2686 0.5583 0.74632 0.3564 

0.5031 0.2949 0.5873 0.75090 0.3711 

0.5137 0.3198 0.5991 0.75417  0.3974 

0.5240 0.3435 0.6407 0.76052 0.4111 

 

Table 14:  Ordinary least squares estimates of the parameters 

Regression 

parameters 
𝛽0, 𝛽1 𝛽2 𝛽3 𝛽4 

OLS estimates 0.4814 0.2409 0.5275 0.7423 0.3364 

 

From the data in Tables 13 and 14, the 

posterior means produced at the average 

quantile level in Table 13 highlighted in bold 

form were the same as the ordinary least 

squares estimates of the parameters in Table 14 

which justifies the accuracy of the empirical 

Bayesian analysis. 

 

 

Average absolute deviation for the grids 

points  

The Bayes estimates for each grid point derived 

were used to estimate new dependent variables 

(𝑌̂). Average absolute deviation is determined 

between the simulated dependent variable (𝑌) 

and the Bayes estimated dependent variable 

(𝑌̂). For each data set 9 average absolute 

deviations were derived from which least 
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average absolute deviation is chosen. Table 15 

presents the 9 average absolute deviation 

values derived respectively for the data set. 

 

Table 15: Average absolute deviation (AAD) of related quantiles  

Quantile 1 2 3 4 5 6 7 8 9 

Average 

absolute 

deviation 

0.8825 0.8159 0.7996 0.7947 0.7036 0.7292 0.7145 0.8039 0.8193 

 

From Table 15, the least average absolute 

deviation was located at 5th quartiles of the 

simulated dependent variables. 

Table 16 revealed the frequencies of the 

quantiles with the least average absolute 

deviation for all the 10000 simulations. From 

Table 16, the optimal quantile range was 

located between quantiles 5 and 7, this implies 

that the optimal hyperparameters of the study 

lied mostly within the 5th and 7thquantiles. 
 

Table 16:  Frequencies of the quantiles with the least average absolute deviation 
Quantile 1 2 3 4 5 6 7 8 9 

Average 

absolute 

deviation 

0 0 35 268 4059 2193 3384 61 0 

 

Conclusion 

This study worked on determining the quantile 

range at which optimal hyperparameters could 

be obtained when Bayesian estimation is 

employed to solve regression analysis of 

normally distributed data with vague 

information. The prior parameters were 

determined from ordinary least squares 

confidence intervals and the optimal quantiles 

were determined using the prior parameters. 

The least average absolute deviations of the 

study revealed that the best model from 10000 

exhaustive trials were within 5th and 7th grid 

points when the confidence intervals were 

divided into 10 quantiles. 

The study also revealed the following: the 

possibility of obtaining the prior distribution 

from data and distribution parameters from 

quantiles of the confidence intervals of OLS 

estimates; the optimal quantile range, where 

prior hyperparameters that produce the best 

model in regression analysis could be found. 

The research work minimizes the difficulties 

involved in identifying prior distribution when 

the true information of the data is vague. The 

research simplified the process of selecting the 

hyperparameters of prior distribution from the 

data with vague information in empirical 

Bayesian inferences, the Bayesian approach 

allows direct probability statements about the 

parameters which are much more useful than 

the confidence statements allowed by 

frequentist statistics. The results justified the 

work of Victoria and Moraga (2021) that 

worked on automatic tuning of 

hyperparameters using Bayesian optimization 

that concluded Bayesian method can clearly 

obtain optimized values of the hyperparameters 

and improve model selection performances. 
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