

Tanzania Journal of Science 47(2): 674-685, 2021

 ISSN 0856-1761, e-ISSN 2507-7961

© College of Natural and Applied Sciences, University of Dar es Salaam, 2021

674

 http://tjs.udsm.ac.tz/index.php/tjs www.ajol.info/index.php/tjs/

Solving the University Course Timetabling Problem Using Bat Inspired

Algorithm

Ushindi Limota, Egbert Mujuni and Allen Mushi*

Department of Mathematics, Box 35062, University of Dar es Salaam, Tanzania.
E-mail addresses: ushilimo@googlemail.com, emujuni@udsm.ac.tz, allenmushi66@gmail.com,

mushi.allen@udsm.ac.tz

*Corresponding author

Received 6 Feb 2021, Revised 26 Apr 2021, Accepted 27 Apr 2021, Published May 2021

DOI: https://dx.doi.org/10.4314/tjs.v47i2.23

Abstract
Many mathematical optimization problems from real-life applications are NP-hard, and hence no

algorithm that solves them to optimality within a reasonable time is known. For this reason,

metaheuristic methods are mostly preferred when their size is big. Many meta-heuristic methods

have been proposed to solve various combinatorial optimization problems. One of the newly

introduced metaheuristic methods is a bat-inspired algorithm, which is based on the echolocation

behaviour of microbats. Bat algorithm (BA) and its variants have been used successfully to solve

several optimization problems. However, from the No-free Lunch Theorem, it is known that there

is no universal metaheuristic method that can solve efficiently all optimization problems. Thus,

this study work focused on investigating the usefulness of BA in solving an optimization problem

called Course Teaching Problem (CTP). Since BA was originally designed to solve continuous

problems, and CTP is a combinatorial optimization problem, a discrete version of BA for CPT has

been proposed and tested using real-life data from the Dar es Salaam University College of

Education (DUCE). The algorithm has produced promising results, as in each execution test, it

generated a timetable in which all hard constraints were met and soft constraints were significantly

satisfied within a few iterations.

Keywords: Combinatorial optimization, Timetabling problem, Metaheuristic algorithms, Bat

algorithm.

Introduction

Optimization problems arise in different

fields such as economics, industries, education,

manufacturing systems such as engineering

designs and many other sectors. Due to the

importance of optimization problems, it is

required to have effective and strong

computational algorithms to solve large-sized

optimization problems. Basically, techniques

for solving optimization problems depend on

whether the problem is continuous or discrete.

While continuous optimization problems

contain completely continuous variables, a

discrete optimization problem contains some

discrete variables, i.e. the domain of the

respective variable consists of a finite set of

discrete values (Alba 2005). The set of discrete

optimization problems forms an optimization

class of problems called combinatorial

optimization whose decision variables are

discrete and has a finite number of feasible

solutions (Baghel et al. 2012). Examples of

combinatorial optimization problems include

the Travelling Salesman Problem (TSP),

Machine Scheduling Problems, Timetabling

Problems (TP) and Assignment Problems. It is

Tanz. J. Sci. Vol. 47(2), 2021

675

worth noting that besides theoretical

significance, combinatorial optimization

problems have empirical relevance, as they

apply to real-world situations because they

arise in several and heterogeneous domains,

such as scheduling, location problems,

transportation, production planning, decision-

making processes, routing and

telecommunications, just to name but a few

(Festa 2014). Due to the concrete usefulness of

combinatorial optimization problems, large

numbers of methods for solving them have

been established.

Methods for solving combinatorial

optimization problems can be categorized as

exact or approximate. Exact methods guarantee

to obtain an optimal solution for each instance

of a combinatorial optimization problem in a

limited time, while approximate methods seek

to achieve solutions that are as nearly as

possible to the optimum values within a

reasonable amount of time. One example of

approximate methods is heuristic methods.

There is a class of combinatorial optimization

problems named NP-hard. This class contains

problems for which no polynomial-time

algorithm to solve them to optimality is known,

and it has been conjectured that such

algorithms do not exist (Garey and Johnson

1979). Unfortunately, many problems in real-

life applications fall into this class of NP-hard

problems and have large sizes. For this reason,

heuristics and metaheuristics (a combination of

heuristic methods) are mostly preferred.

Heuristics and metaheuristic methods compute

good solutions quickly but without a guarantee

of optimality.

The purpose of heuristic methods is to

obtain good quality solutions, not necessarily

optimal but within a reasonable amount of

time. Generally, heuristic methods are based on

experience (that is, rule of thumb). Thus,

heuristics often have an intuitive justification

(Winston et al. 2003). Improvement of

heuristic methods has resulted in metaheuristic

methods that have a high capacity for solving a

large class of problems. Osman and Kelly

(1996) defined metaheuristic as an iterative

generation process that guides a subordinate

heuristic by combining intelligently different

concepts for exploring and exploiting the

search spaces using learning strategies to

structure information in order to find a near-

optimal solution efficiently.

The two main components of meta-heuristic

algorithms are intensification (also called

exploration) and diversification (also called

exploitation) (Yang 2010b). Diversification

tries to ensure that the algorithm does not get

trapped into local solutions, while the idea

behind intensification is to obtain a high-

quality solution within the explored regions.

Thus, for meta-heuristics to be successful in

solving optimization problems, intensification

and diversification strategies should balance in

order to produce an equilibrium between the

exploitation of the collected search experience

and exploration of the search space to find

areas with the best solutions in a specific

problem, close to the optimal solution (Birattari

et al. 2001). A good combination of the two

components improves the achievement of

global optimality.

Meta-heuristic algorithms have been

effectively applied to solve various real-life

problems. A list of such applications includes

Travelling Salesman (Wang et al. 2009),

Facility Location (Qin et al. 2012), Aggregate

Production Planning (APP) (Abu Bakar et al.

2016), Examination Timetabling (Mujuni and

Mushi 2015), Shortest Path in Network (Gonen

2006), Agriculture systems for maximizing

benefits (Srivastava and Yagyasen 2016),

Vehicle routing (Masum et al. 2011),

Optimization of the shift schedules for nurses

(Augustine et al. 2009), Detection of Epistatic

Interactions (Guan and Zhao 2019), Aircraft

Recovery (Zegordi and Jafari 2010), Train

Timetabling (Su and Huang 2006) and Aircraft

Departure Scheduling (Atkin et al. 2008). This

study aims at investigating the usefulness of a

relatively new metaheuristic, a bat algorithm,

on a combinatorial problem called Course

Teaching Problem (CTP).

Bat algorithm is one of the new

metaheuristic algorithms. Proposed in Yang

Limota - Solving the University course timetabling problem using bat inspired algorithm

676

(2010a), it mimics the behaviour of bats when

they hunt for food. Bats are mammals with

wings and they use a process called

echolocation in finding preys and differentiate

different types of objects by varying pulse rates

of emission and loudness (Yang 2010a). Bat

algorithm is a population-based metaheuristic,

and it uses communication between individuals

in searching solution. The key advantage of the

bat algorithm is that it can balance between the

diversification and intensification strategies by

adjusting parameters when the global

optimality is approaching.

Bat inspired algorithms have been used to

solve various optimization problems from both

continuous and discrete fields. A list of such

applications includes Scheduling, Allocation,

Routing, Facility Layout Design (Kongkaew

2017), Image Processing (Zhang and Wang

2012) and Transport Network Design

(Srivastava and Sahana 2019). See Kongkaew

(2017) for overviews and applications of bat

algorithms.

Course Timetabling Problem

The increasing enrolment numbers in

academic institutions over the years and the

complexity of course choices among students

pose huge challenges to the timetabling

process. The need to ensure that the teaching

space is optimally used is extremely important

for academic planning and hence increasing

interest in timetabling research.

Course Timetabling Problem (CTP) falls

into a wide class of Timetabling Problems

(TTP). The timetabling problem involves the

allocation of resources to a limited number of

timeslots, subject to the given constraints

(Wren 1996). Educational timetabling can be

classified into three, namely, school

timetabling, course timetabling and

examination timetabling (Schaerf 1999). All

three problems have some common

characteristics of the general TTP but still can

have significant differences between them

(Mushi 2011).

CTP is defined as an assignment problem in

which students, teachers (or faculty members)

are assigned to courses, course sections or

classes; events (individual meetings between

students and teachers), classrooms and

timeslots (Carter and Laporte 1998). CTP is a

complex and time-consuming task. It involves

the allocation of classes to times and space

subject to a set of constraints, which are

classified as hard and soft. Hard constraints are

those which must be met, while soft constraints

are not necessarily met but must be satisfied as

much as possible (see e.g. Mushi 2011). A

timetable is said to be feasible if it satisfies all

hard constraints.

CTP is known to be NP-hard and therefore

metaheuristic methods are widely used to solve

it. Examples of such metaheuristics include

Tabu Search (Mushi 2006, Aladag and

Hocaoglu 2007), Simulated Annealing (Aycan

and Ayav 2009, Basir et al. 2013), Genetic

Algorithm (Al-Jarrah et al. 2017), Constraint

Programming (Abdennadher and Marte 2000).

To the best of the authors' knowledge, very

little has been done on applications of a newly

proposed Bat-Inspired algorithm in solving the

course timetabling problem using real data.

This has motivated this work.

Mathematical Programming Formulation

As mentioned above, a teaching timetable

consists of hard and soft constraints. This paper

considered the following hard constraints:

1. There is no collision of two or more

courses, i.e. no two or more courses are

assigned into the same timeslot in the

same room.

2. The rooms must have enough size which

can accommodate registered students.

3. A student cannot attend more than one

course at the same timeslot.

Soft constraints considered are:

1. Minimize the number of lectures of the

same course in a day. The idea is to

spread courses over the teaching week.

2. A student should not have consecutive

sessions in a day.

There are various models for CTP. Chacha

and Mushi (2013) gave examples of such

Tanz. J. Sci. Vol. 47(2), 2021

677

models. In this work, we have opted to use a

binary model to represent a schedule of lecture

and courses after performing experimentations.

The mathematical model will have the

following form:

where is a solution, is the objective

function, which consists of soft constraints and

 consists of hard constraints. First, we need

to define sets, parameters and variables to be

used in our formulation.

Sets:

 : Set of all time slots,

 Set of all rooms,

 Set of lectures.

Parameters:

 if lectures and have some common

students; 0 otherwise.

 if and are lectures of the same

course; 0 otherwise.

 : The number of students in lecture .
 : Sitting capacity of room .

Variables:

 if lecture is scheduled in timeslot

 if lecture is scheduled in room

 if room is to be used in timeslot

Model:

 1)

Subject to:

∑ ∑ (2)

∑ (3)

∑ (4)

∑ (5)

 (6)

 (7)

 { }

Equation (1) is the objective function that

needs to be minimized and represents soft

constraints as detailed in the next section.

Equation (2) ensures that lectures with some

common students are not scheduled in the same

timeslot. Equations (3) and (4) guarantee that

each lecture is scheduled precisely once in a

timeslot and room, respectively. Equation (5)

ensures that at most one lecture is assigned to a

room in each timeslot. Equation (6) establishes

a connection between the variables and

 . Equation (7) guarantees that the total

number of students in a lecture does not

exceed the capacity of the assigned room.

Objective Function

The objective function is formulated to

minimize violations of soft constraints. The

hard constraints are also penalized in the

objective function so that all constraints are

represented. Thus, it is a linear combination of

functions of the form;
 , where is the number

of lectures of the same course offered on the

same day, is the number of conflicting

lectures that are offered in consecutive

timeslots, is the number of hard

constraints that have not been satisfied, and ,

 , are weights indicating the importance of

the associated constraint in relation to other

constraints. Since is associated with hard

constraints, it is given a much higher value

compared to those of and . Let

{

{

Then,

 ∑ ∑ and

∑ ∑ (8)

Methodology

Original Bat Algorithm

Bat Algorithm (BA) is one of the relatively

new meta-heuristic algorithms which is nature-

inspired. It was proposed by Yang in 2010

(Yang 2010a). BA mimics the echolocation

behaviour of bats when they are searching for

food and navigation. Echolocation is an

exceptional hearing based navigation system

used by bats and some other animals to sense

and identify preys or any obstacle in their

surrounding environment through releasing a

Limota - Solving the University course timetabling problem using bat inspired algorithm

678

sound (Yang 2010a). For simplicity, Yang

(2010) suggested the following idealized rules:

1. Bats use echolocation to determine

distance, and they can differentiate between

food and barriers.

2. Bats fly randomly with velocity at

position having a fixed frequency ,

varying wavelength and loudness to

search a prey. In this rule, it is assumed that

bats can adjust automatically the frequency

(or wavelength) of their emitted pulses as

well as the rate of pulse emission
 . The automatic adjustment relies on

the proximity of the target.

3. The loudness of the bats can vary in many

ways, however, it is assumed that the

loudness can vary from between positive

values and .

Figure 1 gives basic pseudo-code for BA.

Define the Objective function .

Generate Initial population of the bat
{

For each bat

Initialize the pulse rate , velocity and

loudness

Define the pulse frequency ;

End for
While termination criterion not reached;

For each bat

Generate new solutions by using

Equations (9), (10, and (11)

Generate a random number

If (
Select one solution among the best one

Generate a local solution around one

of the best

End if

If ()

Accept the new solution

Increase and reduce

End if

End for

End while

Ranks the bats and obtain the current best bat

Figure 1: Pseudo-code of the original bat-

inspired algorithm (BA).

The first step involves initialization of bat

population: position , velocity and

frequency . At each generation, each bat

moves by adjusting its velocity
 and position

 at a time using the following equations:

 (9)

 (10)

 (11)

where, is a random number generated from

the interval and represents the current

global best solution obtained after comparing

all the solutions among all bats in the swarm.

Additionally, for the local search part, even if a

solution is selected among the best solutions, a

new solution for each bat is generated using a

random walk.

 (12)

where is a randomly generated number in the

interval and is the average

loudness of the bats in the swarm at a specific

time step . Moreover, the loudness and the

rate of pulse emission of each bat have to be

updated consequently using the following

equations:

 ,

 (13)

where and are constant.

Proposed Bat Algorithm for CTP

The basic bat algorithm discussed above

was basically established for solving

continuous optimization problems. Since

Course Timetabling Problem (CTP) is a

discrete combinatorial optimization problem,

some modifications on the basic BA are

necessary.

In the proposed BA, a position of the bat,

 presents a candidate solution for the CTP. In

solving the CTP using the proposed algorithm,

each position is initialized by using a

heuristic that randomly chooses a lecture and

then tries to find timeslots without collision

and a room big enough to accommodate the

Tanz. J. Sci. Vol. 47(2), 2021

679

lecture. The idea is to start with a good initial

timetable.

Considering the basic parameters of the

original Bat algorithm, which are pulse rate ,
loudness , frequency and speed, the first

two parameters (and will be used in the

way as in the basic BA and initialized

randomly. But, frequency has been fixed to 1

in the proposed algorithm to reduce the

complexity of the algorithm. Velocity has

been modified by relating it with the value of

the objective function. This approach had been

used previously to solve the Travelling

Salesman Problem (Osaba et al. 2016). Thus,

we have adapted using the value of the

objective function in the following way:

 (14)

In Equation (14), can be viewed as the

number of operations that bat will perform in

updating the current position.

In the basic BA, a new position
 is calculated

through Equation (11).

 (15)

Equation (15) implies that the current

position depends on the previous position and

velocity. Thus, this equation can now be

interpreted as that the current position is

obtained by performing
 moves.

To update the current solution of an

instance of the CTP, the most commonly used

strategies are 1-0 and 1-1 moves. For the case

of 1-0 move, a lecture is moved from one

timeslot to another. In the other case timeslots

of two lectures are swapped. Because of its

simplicity, in this work, we have opted to use

1-0 move, in which both lectures and timeslots

are randomly selected.

A pseudo-code of the modified bat algorithm

for CTP is given in Figure 2.

Implementation of the method

A modified BA was implemented by using

Java programming language. Table 1 and Table

2 give the used parameters of BA and weights

of the problem, respectively.

Define the Objective function .

Generate Initial population of the bat
{ }
For each bat

Initialize the pulse rate , velocity and

loudness

Define the pulse frequency ;

End for
While termination criterion not reached;

For each bat

Perform 0-1Moves times to update

Generate a random number

If (
Select one solution among the best one

Generate a local solution around one

of the best

End if

If ()

Accept the new solution

Increase and reduce

End if

End for

End while

Ranks the bats and obtain the current best bat

Figure 2: Pseudo-code of a modified BA for

CTP.

Table 1: Parameters of BA

Parameter Value

Population size; 5

Emission rate;
Loudness;
Maximum iteration 500

 0. 98

 0. 98

Table 2: Weight of the problem

Parameter Value

 10

 1

 1000

Table 2 implies that since is associated with

hard constraints, any solution with
 must be feasible.

Limota - Solving the University course timetabling problem using bat inspired algorithm

680

To generate timetables, the program used 6

input text files, namely: (i) Conflict.txt -

containing courses conflict as per students

registration, (ii) CourseName.txt containing

names of the courses to be scheduled, (iii)

CourseSize.txt containing the number of

students registered for each course, (iv)

NumberOfLectures.txt - containing the number

of lectures for each course, (v) RoomName.txt -

containing names of lecture rooms and (vi)

RoomSize.txt containing the capacity of each

lecture room. The file Conflict.txt was used to

create a lecture conflict matrix. These input

data were collected from Timetabling Section

at DUCE and The Academic Registration

Information System (ARIS) office.

Results and Analysis
A modified BA was tested by using real

data from Dar es Salaam University College of

Education (DUCE) which is a constituent

College of the University of Dar es Salaam in

Tanzania. Data for the first semester for the

Academic Year 2018/2019 were used. Data

included lectures excluding tutorials for science

and mathematics as well as seminars for

humanities. This is due to the fact that the Bat

algorithm is a relatively new metaheuristic

algorithm, thus the study focused on

investigating the usefulness of the algorithm in

solving combinatorial optimization problems.

Small size instances of the problem are

therefore sufficient for the research work.

The study creates a course timetable for

undergraduate courses only which is a major

current project. The data set consisted of 5551

students (from 1
st
 to 3

rd
 year) with a total of

115 undergraduate courses for the semester, 10

lecture rooms of different capacities excluding

laboratories which were used for the teaching

process. The largest room had a sitting capacity

of 1000. There were seven (7) courses with

more than 1000 students, hence exceeding the

maximum room capacity of the available

rooms. Those seven (7) big courses were split

into either two or three sub courses. This gives

a total of 124 courses that were used in the

timetable construction. In addition, these

courses need two (2) or three (3) lectures per

week. Thus, in total there were 273 lectures for

scheduling. There are 12 timeslots per day

which makes a total of 60 timeslots for the five

teaching days of a week (Monday to Friday).

Table 3 provides a summary of the size of input

data, Table 4 gives a sample course data, and

Table 5 gives data on rooms (source: Timetable

Section at DUCE). Table 6 shows a sample

representation of the lecture conflict matrix.

Table 3: Size of input data

Courses

Involved

Number

of

lectures

Number

of rooms

Students

registered

124 273 10 5551

Table 4: Size of input data

Courses

Names

Number of

students

Number of

lectures per week

BL111 470 3

BT130 295 3

BT225 230 3

CH118 470 3

CH121 404 3

CL106 1584 2

CT201 1712 2

Table 5: Size of input data

Name Size

MTR 100

RoomA 160

RoomB 160

RoomC 160

RoomD 160

RoomE 160

TheaterA 460

TheaterB 460

Hall 500

TheaterC 1000

Tanz. J. Sci. Vol. 47(2), 2021

681

Table 6: A sample conflict matrix ()

BL111 BL111 BL111 BT130 BT130 CH116 CH116

Lec1 Lec2 Lec3 Lec1 Lec2 Lec1 Lec2

BL111
0 1 1 1 1 0 0

Lec1

BL111
1 0 1 1 1 0 0

Lec2

BL111
1 1 0 1 1 0 0

Lec3

BT130
1 1 1 0 1 0 0

Lec1

BT130
1 1 1 1 0 0 0

Lec2

CH116
0 0 0 0 0 0 1

Lec1

As mentioned earlier, the algorithm was

implemented using Java programming

language, on a PC machine with Intel(R)

Celeron(R) 2955U processor of 1.4 GHz speed

in Windows 10.

Computational Results

The proposed algorithm was able to generate a

feasible solution of good quality. Table 7 gives

a sample of solutions that were obtained.

Table 7: A sample of a course timetable

Day 07:00-08:00 08:00-09:00 . .

.
13:00-14:00 . .

.
17:00-18:00 18:00-19:00

Mon

CH243-ThtA

CT225-RmB

CT226-MTR

CT107-ThtC

DS101-MTR

 HI103-ThtB

. .

.

CH219-ThtA

CT237-RmA

CT302-RmB

. .

.

BL111-ThtC

CH290-ThtA

LL212-Hall

EC371-RmB

EF200-RmA

KF302-ThtA

Tues

BT225-ThtC

CH121-ThtB

CH243-ThtA

EF200-RmA

EP101A-

ThtC

HI368-ThtA

. .

.

GE142-Hall

GE352-ThtC

. .

.

CH290-ThtA

EC373-RmB

KI310-ThtC

C117-RmB

KF202-ThtA

ZL236-ThtC

Wed
CH118-Hall

 CT106-ThtC

LL201-ThtA

CH377-RmC

CL106A-

ThtC

EC217-RmA

. .

.

CM105-

MTR

DS101-RmB

HI103-ThtA

. .

.

CT209-RmA

DS112A-

ThtC

EV200-ThtA

CH248-ThtB

EF100B-ThtC

KI208-ThtA

Thur
CH116-RmC

GE352-ThtC

DS112B-

ThtC

KI208-ThtB

. .

.

CH118-Hall

CM209-RmA

EA200-RmC

. .

.

CT229-RmB

EP101A-

ThtC

IS272-MTR

BT225-ThtB

T228-RmA

EC371-RmB

Frid
CT229-MTR

C116-RmB

EP101B-

ThtC

CT302-RmA

EP306A-

ThtC

IS245-MTR

. .

.

CH118-Hall

EA200-RmA

EA300B-

ThtC

. .

.

BT130-ThtA

CT225-MTR

EC217-RmA

EC373-RmB

EF100A-ThtC

LT310-ThtA

Limota - Solving the University course timetabling problem using bat inspired algorithm

682

Performance analysis

To assess the performance and the usefulness

of the proposed algorithm, Table 8 presents a

summary of results obtained after running the

proposed algorithm 4 times.

Table 8: Performance of the algorithm

Description
Run/Execution

1 2 3 4

Initial Objective function value 12200 9860 11900 12110

Number of lecture collisions 0 0 0 0

Number of lectures exceeding room capacity 0 0 0 0

Number of lecturers of the same course that offered on

the same day
0 0 9 11

Number of back to back lectures 71 68 74 75

Number of courses not assigned a room 0 0 0 0

Final Objective function value 71 68 74 75

It is worth noting that, in all 4 runs, all hard

constraints were satisfied. That is, there is no

lecture collision and each lecture is allocated in

an appropriate room. Also, the table indicates

that there were no lectures of the same course

which were allocated on the same day.

Furthermore, it can be noted that there were

only a few conflicting courses which were

allocated in consecutive timeslots. Since there

were a total of 273 lectures to be scheduled, the

table shows only between 24.9% and 27.5%

lectures with some common students which

were scheduled in consecutive timeslots. This

has an implication that many students will have

enough time to move from one lecture to

another, in case they have another lecture on

the same day.

On convergence, Table 9 and Figure 3 give the

improvement on the number of soft constraints

that are violated (and)) and values of the

objective function, respectively, against

iterations for the four (4) runs of the algorithm.

Table 9 and Figure 3 show that there is a sharp

drop in target values within the first few

iterations, followed by a slow convergence.

This is a normal situation for metaheuristic

methods, where improvement in solution

quality is expected to slow down when

convergence is approaching. Furthermore,

Figure 3 indicates that feasible solutions were

obtained only during the first few iterations.

The quality of the solution is very good since

the final objective function value is much

smaller compared to the initial value.

Table 9: Improvements of soft constraints by iterations

Iteration
Run 1 Run 3 Run 3 Run 4

1 79 338 88 324 84 325 98 323

5 7 176 12 171 12 179 11 204

10 4 142 6 146 5 170 5 137

20 2 114 4 124 7 106 3 112

100 2 73 1 78 1 83 1 84

200 2 65 0 72 0 82 0 80

300 0 80 0 70 0 77 0 77

400 0 74 0 69 0 75 0 75

500 0 71 0 68 0 74 0 75

Tanz. J. Sci. Vol. 47(2), 2021

683

Figure 3: Convergence to solutions.

Conclusion and Recommendations

This study aimed at investigating the

usefulness of the bat algorithm in solving the

course teaching timetabling problem. Since the

original bat-inspired algorithm was basically

prepared for solving continuous problems,

modifications have been made in order to solve

a problem that is defined on a discrete domain.

We have developed a discrete version of the

bat algorithm for CTP, which was tested using

real data from DUCE. During the

implementation of the proposed algorithm, five

bats were used and each bat's position

represented a solution to the problem. The

obtained results show that the Bat algorithm is

capable of generating timetables with good

quality (Table 8). Moreover, the results show

that the proposed algorithm computed feasible

solutions very fast (see Figure 3).

Future Research Directions

The study was able to produce a feasible course

timetable at DUCE using the bat algorithm but

some recommendations could be valuable for

further studies on the Course Timetabling

Problem at DUCE. It is recommended to do the

following in future:

(i) The study only involved solving the

problem by assigning lectures to timeslots

and rooms. It is recommended to include

seminars, tutorials and experiments for

science subjects.

(ii) In this study, the bat algorithm was

applied as a benchmark when solving the

Course Timetabling Problem at DUCE.

For further research, there is a need to

apply hybrid heuristic techniques by

combining the bat algorithm with other

heuristics.

(iii) Performing further fine-tuning of

parameters might reduce the running time

of the algorithm.

(iv) It is worth doing a comparative analysis

between the bat algorithm and other

recent algorithmic techniques.

References

Abdennadher S and Marte M 2000 University

course timetabling using constraint

handling rules. Appl. Artific. Intel. 14(4):

311-325.

Abu Bakar MR, Bakheet AJK, Kamil F, Kalaf

BA, Abbas IT and Soon LL 2016 Enhanced

simulated annealing for solving aggregate

production planning. Mathematical Probl.

Engin. 2016: 1-9.

Aladag CH and Hocaoglu G 2007 A tabu

search algorithm to solve a course

timetabling problem. Hacettepe J. Math.

Statis. 36(1): 53-64.

Alba E 2005 Parallel Metaheuristic: A New

Class of Algorithms. John Wiley and Sons,

Inc., Hoboken, New Jersey, Canada.

Al-Jarrah MA, Al-Sawalqah AA and Al-

Hamdan SF 2017 Developing a course

timetable system for academic departments

using genetic algorithm. Jordan J. Comput.

Inform. Technol. 3(1): 25-36.

Atkin JA, Burke EK, Greenwood JS and

Reeson D 2008 A metaheuristic approach

to aircraft departure scheduling at London

Heathrow airport. Comput-aided Syst. Publ.

Transport 600: 235-252.

Augustine L, Faer M, Kavountzis A and Patel

R 2009 A Brief Study of the Nurse

Scheduling Problem (NSP). Pittsburgh,

Carnegie Mellon School of Computer

Science.

Aycan E and Ayav T 2009 Solving the course

scheduling problem using simulated

Limota - Solving the University course timetabling problem using bat inspired algorithm

684

annealing. In 2009 IEEE Int. Adv. Comput.

Conf. Patiala 2009: 462-466.

Baghel M, Agrawal S and Silakari S 2012

Survey of metaheuristic algorithms for

combinatorial optimization. International J.

Comput. Applicat. 58(19): 21-31.

Basir N, Ismail W and Norwawi NM 2013 A

simulated annealing for Tahmidi course

timetabling. Proc. Technol. 11: 437-445.

Birattari M, Paquete L, Strutzle T and

Varrentrapp K 2001 Classification of

Metaheuristics and Design of Experiments

for the Analysis of Components. Tech. Rep.

AIDA-01-05.

Carter MW and Laporte G 1998 Recent

developments in practical course

Timetabling. Practice and Theory of

Automated Timetabling, Springer Verlag

Berlin, 3-19.

Chacha S and Mushi A 2013 Optimal solution

strategy for University Course timetabling

problem. International Journal of Advanced

Research in Computer Science 4(1): 35-40.

Festa P 2014 A brief introduction to exact,

approximation, and heuristic algorithms for

solving hard combinatorial optimization

problems. In 2014 16
th

 International

Conference on Transparent Optical

Networks (ICTON) IEEE, 1-20.

Garey MR, Johnson D 1979 Computers and

Intractability: A Guide to the Theory of NP-

Completeness, W. H. Freeman & Company.

Gonen B 2006 Genetic Algorithm finding the

shortest path in Networks. Reno, University

of Nevada.

Guan B and Zhao Y 2019 Self-adjusting ant

colony optimization based on information

entropy for detecting epistatic interactions.

Genes 10(2): 114.

Kongkaew K 2017 Bat algorithm in discrete

optimization: A review of recent

applications. Songklanakarin J. Sci.

Technol. 39(5): 641-650.

Masum AKM, Shahjalal M, Faruque F and

Sarker IH 2011 Solving the vehicle routing

problem using genetic algorithm.

International Journal of Advanced

Computer Science and Applications 2(7):

126-131.

Mujuni E and Mushi AR 2015 Solving the

Examination Timetabling Problem Using a

Two-Phase Heuristic: the case of Sokoine

University of Agriculture. J. Inform.

Comput. Sci. 10(3): 220-227.

Mushi AR 2006 Tabu search heuristic for

university course timetabling problem. Afr.

J. Sci. Technol. 7(1): 34-40.

Mushi AR 2011 Two-phase heuristic algorithm

for the university course timetabling

problem: the case of University of Dar Es

Salaam. Tanz. J. Sci. 37(1): 73-83.

Osaba E, Yang XS, Diaz F, Lopez-Garcia P

and Carballedo R 2016 An Improved

Discrete Bat Algorithm for Symmetric and

Asymmetric Traveling Salesman Problems.

Engin. Applicat. Artific. Intel. 48: 59-71.

Osman IH and Kelly JP 1996 Meta-heuristics:

an overview. Meta-heuristics, 1-21.

Springer, Boston, MA.

Qin J, Ni LL and Shi F 2012 Combined

simulated annealing algorithm for the

discrete facility location problem. Sci.

World J. 2012: 1-7.

Schaerf A 1999 A survey of Automated

Timetabling. Artificial Intelligence Review

13(2): 87-127.

Shukl AN and Garg ML 2018 A List based

Approach to Solve Graph Coloring

Problem. In 2018 International Conference

on System Modeling and Advancement in

Research Trends (SMART) IEEE 265-267.

Srivastava S and Sahana SK 2019 Application

of Bat Algorithm for Transport Network

Design Problem. Appl. Computat. Intel. Soft

Comput. 2019(5): 1-12.

Su JM and Huang JY 2006 Using ant colony

optimization to solve train timetabling

problem of mass rapid transit. In 9
th

 Joint

International Conference on Information

Sciences (JCIS-06), Atlantis Press, 1-4.

Wang Z, Geng X and Shao Z 2009 An

effective simulated annealing algorithm for

solving the travelling salesman problem. J.

Computat. Theoret. Nanosci. 6(7): 1680-

1686.

Tanz. J. Sci. Vol. 47(2), 2021

685

Winston WL, Venkataramanan M and

Goldberg JB 2003 Introduction to

mathematical programming, Duxbury;

Pacific Grove, CA: Thomson/Brooks/Cole.

Wren A 1996 Scheduling, timetabling and

rostering a special relationship? In

International Conference on the Practice

and Theory of Automated Timetabling (46-

75), Springer, Berlin, Heidelberg.

Yang XS 2010a A new metaheuristic bat-

inspired algorithm. Nature-inspired

cooperative strategies for optimization

(NICSO 2010), 65-74.

Yang XS 2010b Nature-inspired metaheuristic

algorithms, Luniver Press, University of

Cambridge, United Kingdom.

Zegordi SH and Jafari N 2010 Solving the

airline recovery problem by using ant

colony optimization. Int. J. Industr. Engin.

Product. Res. 21(3): 121-128.

Zhang JW and Wang GG 2012 Image matching

using a bat algorithm with mutation. In

Applied Mechanics and Materials 203(1):

88-93). Trans Tech Publications Ltd.

