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Abstract 
The COVID-19 pandemic began in Wuhan City in the Hubei province of China in December 

2019. The disease spread quickly in many countries around the world due to mobility of people 

from one location to another. As a result, a COVID-19 mathematical model with the impacts 

on immigrants was proposed to study its transmission dynamics and possible control measures. 

The reproduction number was determined by using the next-generation technique and found to 

be 0.636, indicating that the transmission could be minimized in the community if all 

immigrants were effectively controlled. The Pontryagin's Maximum Principle was applied in 

analysing control strategies which are screening of immigrants, provision of public education 

to raise community awareness, and treatment of infected individuals. The simulated results 

revealed that a combination of public education, screening of all immigrants, and treatment of 

infected individuals plays a significant role in reducing COVID-19 transmission in the 

community. 
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Introduction  
The COVID-19 outbreak initially 

occurred in Wuhan City in Hubei province of 

China in December 2019. It quickly spread to 

numerous nations worldwide (Singh et al. 

2020) and the World Health Organization 

(WHO) declared it a pandemic on March 11, 

2020 (Adegboye et al. 2020). COVID-19 is 

transmitted by infected individuals through 

coughing or sneezing, whereby tiny droplets 

with viruses enter the mouth or the nose of a 

susceptible individual, causing an infection to 

occur. On the other hand, a susceptible 

individual may pick viruses from the surfaces 

contaminated by droplets from infected 

individuals (Seidu 2020). Fever or chills, 

cough, shortness of breath or difficulty 

breathing, fatigue, muscle or body aches, 

headache, loss of taste, sore throat, 

congestion or runny nose, vomiting, and 

sometimes diarrhoea are typical symptoms of 

COVID-19 (Adhikari et al. 2020, Jia et al. 

2020, Mumbu and Hugo 2020). Currently, 

there is no proper treatment rather than the 

use of vaccines and traditional treatments. In 

addition, non-pharmaceutical interventions, 

such as the use of masks, hand washing, 

sanitizers, and other health care approaches 

play vital roles in the disease control. 

During the COVID-19 pandemic, people 

travelled from one country to another for fear 

of disease contamination or other business 

reasons. Some countries around the world 

tightened restrictions on international arrivals 
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to slow the spread of the disease (Gwee et al. 

2021). Indeed, COVID-19 has slowed 

economic growth, reduced the number of 

tourists, as well as technological transfers 

(Tchoumi et al. 2022). Some studies have 

been conducted on the transmission of 

COVID-19 in the presence of immigrants. 

Alfred et al. (2021) evaluated the impacts of 

immigrants in the context of Tanzania, where 

the output indicated that as the number of 

infected immigrants increases in relation to 

social interactions, it resulted in high 

transmission rate. Tchoumi et al. (2022) 

studied the impacts of infectious immigrants 

and discovered that increasing vaccination 

rates significantly reduced infections and 

transmissions regardless of the number of 

deaths that occurred.   

On the other hand, Xing et al. (2020) used 

the SEIR model to study the impacts of 

population migration around the Spring 

Festival on the spread of COVID-19 in 

China's Guangdong and Hunan provinces; 

discovered that immigrants contributed 

significantly to COVID-19 transmission. 

Furthermore, Marouf (2021) reported that 

COVID-19 has rapidly spread through 

immigration in the United States, where the 

government decided to establish a medical 

tracking system for all immigrants to reduce 

transmission. Additionally, the World Health 

Organization (2021) classified national 

COVID-19 adaptation policies; public health 

policies on migrants and refugees access to 

health care and migrant policy response to 

COVID-19 for foreigners within national 

borders for the purpose of reducing the 

transmission. On other hand, immigration 

strategies were analysed to justify the causes 

of the disease spread in the community 

(Kassa et al. 2020). 

According to Lee et al. (2020), Singapore 

utilizes a range of techniques to minimize 

disease spread including precautionary 

measures such as restricting large gatherings 

and conducting temperature check-ups for 

community members in public services. 

Rahman and Kuddus (2021) analysed control 

measures against COVID-19 transmission in 

Ghana and found that people should use hand 

sanitizers, wash their hands regularly and 

practice social distance. In China, Adhikari et 

al. (2020) investigated the epidemiology, 

causes, clinical diagnosis, prevention and 

control of COVID-19 where preventive 

strategies could workout in lowering the 

transmission in community. Jia et al. (2020) 

analysed the effects of home quarantine 

measures practised in China. Furthermore, 

Singh et al. (2020), and Ivorra et al. (2020) 

studied the COVID-19 in India using the 

standard SEQIR model from the stochastic 

dynamics method, examining the impacts of 

quarantine and social isolation as proposed 

management strategies.  

In controlling the transmission, it was 

argued that the government should expand 

the healthcare facilities (Tarimo and Wu 

2020) including tracking of the immigrants. 

In addition, all travellers should seek medical 

attention and disclose their trip history to the 

doctors (Kucharski et al. 2020).   

The particular study is sought to create a 

mathematical model accounting for the 

impacts of immigration toward the 

transmission of COVID 19. It also designed 

to assess the effectiveness of COVID-19 

control techniques which are screening of 

immigrants, provisional public education to 

raise community awareness, and treatment of 

infected individuals. 

 

Materials and Methods 
In this section, a deterministic 

mathematical model of human population 

with the effects of immigrants has been 

developed. The modelled population is 

divided into four subclasses: susceptible 

population ( )S t , that includes all healthy 

individuals who are likely to become infected 

when interacting with infectious ones, ( )E t  

represents exposed individuals who may have 

been infected but are not infectious, whereas 

individuals who developed clinical symptoms 

and can transmit disease to others are 

represented by ( )I t . The symbol ( )R t , on the 

other hand, represents all individuals who 

gain immunity through supportive services or 

treatment, either by natural means or by 

being admitted to hospital. The immigrant 

aspects are introduced to the susceptible class 

for analysing their effects on disease 
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transmission and the following parameters 

are taken into account in the model 

formulation: 

i The rate at which the human population 

recruited in susceptible group is 

expressed as  1 21p      , 

where i  for 1,2i   are the rates of 

immigrants which enter into exposed 

class ( )E t  and infected class ( )I t , 

respectively and p  representing 

recruitment rate.  

ii The disease transmission occurs in the 

susceptible population through direct 

contact with an infected individual at 

the rate of  .   

iii The infected individuals are transferred 

to the recovered class at the rate of   

and those who gain immunity join the 

class of susceptible by the rate η.  

iv  The population decreases through the 

natural mortality rate μ as well as 

disease induced death rate of  𝑚. 

Putting into consideration the parameters and 

the state variables the following model 

equations were formulated: 

 

 

 

 

1 2

1

2

1
dS

p SI R S
dt

dE
SI p E

dt

dI
E p m I

dt

dR
I R

dt

    

   

   

  

       

   

    

  
  (1) 

such that  

( ) 0, ( ) 0, ( ) 0, ( ) 0t t t R tS E I   
. 

 

 

 

Invariant region 
Since the model involves people, all 

parameters must therefore be in an invariable 

positive region for all t ≥ 0. Addition of all 

equations in system (1) and further 

simplification results to;  

dN
p N mI

dt
  

              (2) 

Suppose 0m    then (2) becomes; 

dN
p N

dt
 

.                       (3) 

Applying Birkhoff and Rota (1982) theorem 

equation (3) becomes 

  

0

tp p
N N e 

 

 
   

  .        (4) 

 Thus, as t   then (4) gives 
p

N


 . 

Hence, 

4, , , :
p

S E I R N




 
    

 
R

. 

Therefore, the feasible region for the system 

(1) in 
4
R  is well-posed.  

 

Positivity of solution 

Lemma 1. Let 

 (0) 0; 0, (0), (0), (0) 0N S E I R    . 

Then the set of solutions of the model system 

of equations (1)  , , , ,S E I R N  are positive 

for 0t  . 

Proof. From the system (1), the first equation 

gives                                                  

1 2[1 ( )]
dS

p S
dt

     
.            (5) 

Integrating equation (5) and applying the 

initial conditions yields; 

1 2 1 2
0

(1 ( )) (1 ( )) tp p
S S e    

 

    
   

  . (6) 

 From equation (6) it follows that as t  , then 
(1 ( ))

1 2
p

S
 



 
  (7) 



Hugo et al. - Modelling the Impacts of Immigrants on COVID 19 Transmission Dynamics … 

572 

A similar approach can be applied in the rest of the model equations of the system (1) for all 

0t  . Therefore,
 
 (0) 0, (0) 0, (0) 0, (0) 0S E I R     0t  .                    □ 

 

Steady-state  

The disease-free equilibrium (DFE) point of the system of equations in (1) is obtained by 

setting the right-hand side of each equation equal to zero, resulting in  

 

 * * * * 1 2
0

[1 ( )]
, , , ,0,0,0

p
E S E I R

 



  
   

  . (8) 

 

Basic reproduction number 
In mathematical epidemiology, the basic 

reproduction number 0R  refers to the 

average number of secondary infected 

individuals produced during the life of a 

single primary infected individual. The 0R  

for this study was determined by using Next-

generation technique as applied by Van den 

Driessche and Watmough (2002). For this 

particular model, the 0R  is given as: 

0

 

( )( )m
R



    



  


.            (9) 

 

 

Stability analysis of DFE 

The local stability of 𝐸0  is evaluated as;  

0

1 2 3 4

0

( , , , )
0 ( ) 0

( , , , )

0 ( ) 0

0 0 ( )

E

f f f f
J

S E I R

m


 




 



  

  

  
 
 

 
    


 

   
 

   . (10) 

Matrix (10) gives eigenvalues of , ( )
1 2
          and the other two eigenvalues are 

the positive solution of  
2( )f A B    

, (11) 

where [( ) ( )]A m        and ( )( )B m


   



     . 

Applying the Routh-Hurwitz technique as, 0, 0A AB   and since 0A  then 0B  it follows 

that 

( )( ) 0m


   



     , implying that 1

( )( )m



    




  
. That is to say 0 1R  .   

Hence, Theorem 1 summarizes the results. 

Theorem 1:  If 0 1R   then the disease-free equilibrium is locally asymptotically stable 

otherwise if 0 1R   it is unstable. 
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Global stability of 0E  

We examine DFE's global stability as 

 

   

,

, ,              ,0 0

s
s i

i
s i s

dX
A X X

dt

dX
B X X B X

dt





  
  (12) 

where: 

( , ), ( , )X S R X E Is i   and 0 , 0, 0, 0E




 
 
 

. 

*X is globally asymptotically stable (GAS) if it is satisfying the following two conditions: 

 

 

1. ,0 ,

2. , ( , ).

s
s

i
s i i s i

dX
A X

dt

dX
B X X EX B X X

dt





   
  (13) 

This implies that 𝐵~(𝑋𝑠, 𝑋𝑖) ≥ 0  for (𝑋𝑠, 𝑋𝑖) ∈ 𝜙  where 𝐸 is a Metzler Matrix and 𝜙 is the 

region of the model system (1) which is GAS if two conditions in (13) satisfy the Theorem 2.  

Theorem 2: The disease-free equilibrium point , 0, 0, 0


 
 
 

of the model system (1) is GAS if 

0 1R   withholding conditions 1 and 2 in (13) otherwise it is unstable. 

Proof. Condition 1 in (13) is proved as follows: 

Let 

( , )   and  ( , )
( ) 0

S i S

IS R S S
A X X A X O

I R

   

  

        
    

     , 

which gives ( )
t

S t Ae




 
   . 

Then at 0t  , ( ) (0)
t

S t S e


 

  
  

 
 
 

. Furthermore, as t   then the solution 

becomes ( )S t



   implying that 0E  is global asymptotically stable. 

Model (1) has to satisfy condition 2 as 

  0 1

2

( )
, ( , )s i i s i

I S S p
B X X EX B X X

p

 



  
    

  . 

Stability of Metzler matrix E by Routh-Hurwitz technique 

( )
0

( )m


  



   


  



   
 (14) 
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Thus, the equation generated in (14) has the same characteristics as equation (10), hence, E is 

a Metzler matrix and stable when 𝑅0 < 1.                                                                            □ 

 

Existence and stability for 
*E  

The endemic equilibrium point is denoted by 
*E obtained as  

 

*
( )*

,
*

( )

p I
S

I

   

   

  


 

*
* I

R


 



 and  

 * * *

1*

*

( ) ( ) ( )

( ) ( ) ( )

I p I p I
E

I

           

       

       


         

and 
*

I  is the positive root of  

 
2

* * 0A I BI C  
, (15) 

 where,  

 
   

    

1 2

1 2 1 2

, ,

1
1 ( )( ).

o

o

A C p p
R

B p p p
R

  
         



            

  
         

 

 
         

   
 

Local stability of endemic equilibrium point, 1E  

Local stability of endemic equilibrium points near 0 1R   is analysed by using the centre of 

manifold Theorem as it is presented in Mukandavire et al. (2009). This method is implemented 

by renaming the state variables of the COVID-19 model (1) as to 

1 2 3 4,  E ,  I ,S x x x R x     where  

 1 2 3 4,  ,  ,  
T

iX x x x x
,  

( ),    =( , , , )
1 2 3 4

T
dXi F X F f f f fi
dt

 , where  . 
T

 is a matrix transpose.  

Thus,  

 

 

 

 

1
1 2 1 3 4 1

2
1 3 1 2

3
2 2 3

4
3 4

1 ,

,

,

.

dx
p x x x x

dt

dx
x x p x

dt

dx
x p m x

dt

dx
x x

dt

    

   

   

  

       

   

    

  
 (16) 
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The Jacobian matrix at DFE is 

0

0 ( ) 0

0 ( ) 0

0 0 ( )

A

m


 




 



  

  

 
 
 

 
   

 
   

 
   . (17) 

Theorem 3. Consider the following general system of ordinary differential equations with a 

parameter  , then 

 2( , ), :  and ,n n ndx
f x f f

dt
     

 (18) 

where 0 is an equilibrium point of the system, that is, (0, ) 0 f     and let assume that. 

1.  (0, 0) 0, 0
fiA D fx
x j


 



 
 
  

is the linearization matrix of the system around the 

equilibrium 0 with   evaluated at 0; 

2. Zero is a simple eigenvalue of A  and all other eigenvalues A  have negative real 

parts; 

3. Matrix A  has a right eigenvector w and a left eigenvector v corresponding to the ze-

ro eigenvalue. 

Let f
k  be the 

th
k  component of f  and 

   
2 2

, , 1 , 1

0,0 , 0,0 .
n n

k k
k i j k i

k i j k ii j i

f f
a v w w b v w

x x x  

 
 

   
 

 (19) 

The local dynamics of the system (19) around 0 are determined by the signs of 𝑎  and 𝑏. 

(i) 0, 0a b  . When 0    with 1  , 0 is locally asymptotically stable, and  there 

exists a positive unstable equilibrium; when 0 1  0 is unstable and there exists 

a negative and locally asymptotically stable equilibrium; 

(ii) 0, 0a b  . When 0    with 1  , 0 is unstable; when 0 1  , 0 is locally 

asymptotically stable, and there exists a positive unstable equilibrium; 

(iii) 0, 0a b  . When 0    with 1  , 0 is unstable, and there exists a locally as-

ymptotically stable negative equilibrium; when 0 1  , 0 is stable, and a positive 

unstable equilibrium appears; 

(iv) 0, 0a b   When  changes from negative to positive, 0 changes its stability from 

stable to unstable. Correspondingly, a negative unstable equilibrium becomes positive 

and locally asymptotically stable. Particularly if 0a   and 0b  , then a backward 

bifurcation occurs at 0.   
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Take 
*   as a bifurcation parameter, consider 

0

[1 ( )]
1 2

(
1

)( )

p
R

m

  

    

 

  
  .  

By using 
*     and making 

*


 
 

2

*

1

( )( )

[1 ( )]

m

p

    

 




  

 


.                                                              (20) 

 Thus, substituting (20) into (17) gives 

*

( )( )
0

( )( )
0 ( ) 0

0 ( ) 0

0 0 ( )

m

m
J

m



   
 



   
 



  

  

    
 
 

    
 
 

   
    .            (21) 

Then, the eigenvalues of (21) are  0, , ( ), ( )m          thus zero is an eigenvalue of 

𝐽𝛽∗ . Therefore, Theorem 3 holds under condition 2.  

The associated eigenvectors corresponding with zero eigenvalues of (21) are 

1 2 3 4

( )( )( ) ( )( ) ( )
, , , 1

m m
w w w w

            

   

       
    

. 

From (21) the eigenvectors of transpose the matrix (21) associated with zero eigenvalues are 

given as  

1 2 3 40, , 1, 0v v v v


 
   

 . 

Computational of a and b. 

The associated non-zero second-order partial derivative of (16) at disease-free equilibrium and 
*

 are given by. 

 
2

0

, , 1

,0
n

k
k i j

k i j i j

f
a v w w x

x x




 


, 

2 2

2 2

1 3 3 1

f f

x x x x N

 
 

   
,  

2 2

2 2
2 1 3 2 3 1

1 3 3 1

f f
a v w w v w w

x dx x x

 
 

  
. 

Then,  

 
2

2

( )( ) ( ) ( )( )
.

( )

m m
a

          

   

        
  

    

If 
 

2
( )( ) ( ) ( )( )m m                 

,
 

then 0,  otherwise 0a a  . 
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Calculation for b 

2

0*
, 1

( ,0)
n

k
k i

k i i

f
b v w x

x 




 


, 

1 2( )( [1 ( )])p
b

   



  


. 

This implies that  
    1 21

0
p   



  


  
 and hence 0b  . 

This is clear that 0a   and 0b   as per the conditions stated. The analysis is therefore 

supported by Figure 1.   

 
Figure 1: The bifurcation analysis of the model. 

 

Application of optimal control  

In this section, Pontryagin's Maximum Principles are applied to model (1) to determine the 

necessary conditions for the existence of optimal control of COVID-19. This aims to reduce 

the number of people in the community who might have COVID-19 by implementing three-

time dependent control strategies. The first control, 1( )u t , is associated with screening and 

testing of immigrants, while the second control, 2 ( )u t , is associated with raising awareness 

through public education campaigns, and the third control, 3 ( )u t , is associated with prevention 

through treatment of infected individuals.  
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The system of the model (1) becomes 

    

     

     

   

1 1 2 2

2 1 1

1 2 3

3

1 1 1 ,

1 1 ,

1 ,

,

dS
p u u SI R S

dt

dE
u SI u p E

dt

dI
E u p m I u I

dt

dR
u I R

dt

    

   

   

  


         


      


       


    
          (22) 

with (0) 0,  (0) 0,  (0) 0,  (0) 0S E I R    . Furthermore, control functions  1u t ,  2u t  

and  3u t  are assumed to be Lebesgue integrable functions at  0, ft   .  

0 1, for  1,  2,  3:i iu iU u    . Thus, the objective functional is presented as; 

22 2

31 2
1 2 3 1 2 1 2 3

0

( , , )  ,
2 2 2

ft

uu u
J u u u A E A I B B B dt

 
     

 


                   (23) 

where the constants  iA  and jB  for 1, 2,3i   and 1, 2,3j  taken as positive weights. Further 

2

1 1

2

B u
 characterizes the effort of cost control on screening of immigrants, 

2

2 2

2

B u
 represents the 

cost associated with implementing public education campaigns, and 

2

3 3

2

B u
represents the costs 

associated with the treatment of infected individuals. A quadratic function that meets the 

optimality conditions is considered to minimize 1( )u t , 2 ( )u t  and 3 ( )u t  determine optimal 

control 
*

1u  
*

2u
 
and 

*

3u such that 

 

    * * *

11 2 3 1 2 3 1 2 3, , min , , | , ,J u u u J u u u u u u 
, 

where 

  1 2 3 1 2 3 1 2 1, ,  such that , ,  are measurable with 0 1,0 1 and 0 1u u u u u u u u u       

0 ft t   . The Hamiltonian function (H) is therefore defined as: 

23

1 2 1 2 3 4

1

( , , , ) ,
2

i i

i

B u dS dE dI dR
H S E I R A E A I

dt dt dt dt
   



      
         (24) 

where: ,  1, 2,3, 4i i  are adjoint variables (co-state variables). 

 

Optimal control existence  
 The existence of control is evaluated 

through the results obtained by Fleming and 

Rishel (1975) through the following theorem. 

Theorem 4. Let the optimal control problem 

that minimizes the objective function J be 

defined over a time [0, T]. If the function is 

defined on a set of bounded and lebsegue 

measurable control 
u

 and subjected to the 

dynamic constraint of some state equations, 

then there exists an optimal solution 
*

u

such 

that  *
min  

u
J u u  provided that the 

following conditions hold: 
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(i) The control set is convex and closed. 

(ii) The right-hand side of the state system 

is bounded by a linear function in the 

state and control variable. 

(iii) The state variables used in the system 

(1), together with their control 

variables are not empty.  

(iv) There exist some constants 1 2 0,  x x 

and 1 0y  , for which the integrand 

of the objective function is convex and 

satisfies the condition: 

1

22

1 2

1

( )

y
n

i

i

J u x u x


 
  

 


. 

The proof of Theorem 4 was found in the 

book of Fleming and Rishel (1975) entitled 

Deterministic and Stochastic optimal control 

and Lenhart and Workman (2007). 

Conversely, for the analysis of a particular 

paper, the conditions that guarantee the 

existence of an optimal solution for the 

objective functional are verified. Consider an 

optimal control, which is subject to the state 

constraint given by the system; 

1. By definition, the control variables 

1 2 3,  , u u u  are convex and closed. 

2. The solutions of the state system are 

bounded since the state functions are line-

ar about the control variables. Hence, the 

second condition is satisfied. 

3. The state and our corresponding set of 

control variables u in the system (1) are 

presumed bounded and not empty. 

4. As the result of boundedness, thus 

1 2 0,  a a   and 1 0B  , for which the in-

tegrant of the objective functional is con-

vex and satisfies  
1

23 22

1 2 1 2

1 12

y
n

i i
i

i i

B u
A E A I a u x

 

 
    

 
 

. 

Therefore, it is worth it to be concluded that 

there exists an optimal solution that lies 

between 0 and 1 that minimizes the objective 

function.   

 

Necessary optimality conditions  
The optimality condition of the solution of 

the model is determined based on the 

following theorem. 

 

Theorem 5. Let iu  be the set of optimal 

control and iX be the corresponding solution 

of the set of equations that minimizes the 

objective function J over the set of controls, 

then there exist j adjoint variables such 

that the optimality system is 

,

( ) 0,

0.

j

j f

d H

dt dX

t

H

u





 
 





 

   

For the optimal controls 
*

1u  
*

2u
 
and 

*

3u  to 

minimize  1 2 3, ,J u u u over  , then there 

exist adjoint variables 1 2 3 4, , and      

satisfying; 

(i) Adjoint equation  

jd H

dt j

 


  ,                             (25)   

where , , ,j S E I R  .  

(ii) Transversality conditions (final time)

( ) 0, 1, 2,3, 4f iti   . 

(iii) Optimality condition 0

i

H

u





.     

Characteristics of optimal controls 
*

1u , 
*

2u
 

and 
*

3u  are based on the following 

conditions: 

1

0
H

u





,

2

0
H

u





 and 

3

0
H

u





 

subject to the constrains 

1 1max 2 2max 3 3max 0 ,0  and 0u u u u u u     

 where; 
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 * * *

1 1 1 1 2 2 1 3 2

1

* *

2 2 1 2

2

* *

3 3 3 4

3

0

0

0 .

H
B u p p p

u

H
B u SI SI

u

H
B u I I

u

      

   

 


     



   



   


                              (26) 

 

      * * * * * * * *
1 2 1 2 3 1 2 1* *

1 2

1 2

,
p S I

u u
B B

           
 

 and. 

 * * *

3 4*

3

3

I
u

B

 


 

The controls are further presented as 

 

*

* * *

*

0  If  0

 If  0 1

1 If  0

i

i i i

i

u



 



 


  


 , for 1, 2,3i   

 where; 

        * * * * * * * * * * *
1 2 1 2 3 1 2 1 3 4* * *

1 2 3

1 2 3

, ,
p S I I

B B B

          
  

    
  

. 

  

Then, the solution is characterized as  

    

   

* * * *

1 2 1 2 3 1*

1

1

* * * * * * *

2 1 3 4* *

2 3

2 3

max 0,min 1, ,

max 0,min 1, , max 0,min 1, .

p
u

B

S I I
u u

B B

     

    

        
    

          
       
              

Furthermore, the adjoint equations are given by 

  

 

  
  

 

* *

2 1 2 *1
1

* * *2
2 3 2 1

* *

2 1 2 * * *3
3 3 4 3 2

* * *2
4 1 4

1
,

,

1
( ) ,

.

I uH

t S N

H
A

t E

S uH
u m A

t I N

H

t R

  



   

  
    


   

  
   
 

 
     
 

  
        
 

 
    
       (27) 

 

  



Tanz. J. Sci. Vol. 48(3) 2022 

581 

Results and Discussions  
In this section, numerical computations were 

performed to determine the best COVID-19 

control strategy. To assess the impacts of 

control strategies, a numerical simulation was 

run with different parameters derived from 

various literature reviews based on disease 

dynamics. The initial and parameter values 

used in simulations include 

   55, 000, 000,   4, 000, 000,  S t E t   

   509,   183I t R t  , 0.02857  ,  

0.5944  , 1000000p   (Mumbu and 

Hugo 2020) and 0.00875, 0.125  

(Adegboye et al. 2020), while 2 0.002  , 

1 0.002  , 0.0413m  , 0.36   were 

assumed based on dynamics of the disease. 

Numerically, the simulations of the control 

strategies are therefore presented in Figure 2 

to Figure 5.   

 

Strategy 1:  Effects of screening of 

immigrants, public education, and 

treatment of infected individuals 
Figure 2 shows that the spread of 

COVID-19 has been restricted since day one, 

with the exposed population decreasing while 

the susceptible population grows, indicating 

that COVID-19 will be controlled in the 

community. 

 
Figure 2:  Effects of screening of immigrants, community education, and treatment of infected 

individuals. 

 

Strategy 2: Effects of public education on 

the community and screening of 

immigrants 
 Figure 3 depicts the impacts of a public 

education campaign combined with a 

screening of the immigrant population. The 

data reveal that the number of infected people 

has decreased considerably, indicating a 

positive trend in reducing COVID-19 

transmission in the community. 
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Figure 3: The effects of public education on the community and screening of immigrants. 

 

Strategy 3: Effects of treatment of infected 

individuals and screening of immigrants 
 Figure 4 depicts the impacts of treatment 

and screening of immigrants, indicating that 

the infected class has decreased considerably, 

indicating that more individuals may recover 

and re-join the vulnerable class.  

 
Figure 4: The effects of treatment of infected individuals and screening of immigrants. 

 

Strategy 4: Effects of public education 

campaigns and treatment of infected 

individuals 
 The findings indicated that public 

education and treatment made a significant 

contribution to preventing disease 

transmission in the community, as shown in 

Figure 5. As a result, COVID-19 

transmission is expected to decline, resulting 

in a reduction in the number of infected 

individuals. 
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Figure 5: The effects of public education campaign and treatment of infected individuals. 

 

Conclusion 
In this paper, a non-linear mathematical 

model of COVID-19 with four 

compartments; susceptible, exposed, 

infectious, and recovered, has been proposed 

and studied. Theoretical and numerical 

analyses were carried out and the dynamical 

behaviour of the system was found to be 

mathematically well-posed. Reproduction 

number was computed by using the next-

generation matrix method and through 

applying interventions its numerical value 

was 0.6365 showing that the COVID-19 can 

be controlled in the community as the 

members apply effective control measures. 

The Pontragin’s Maximum Principle was 

employed to evaluate necessary conditions 

that an optimal control and corresponding 

state must satisfy. The results from 

simulations showed that applications of all 

control strategies (screening of immigrants, 

community education campaigns, and 

treatment of symptomatic individuals) at a 

time are sufficient for reducing the spread of 

COVID-19. On other hand, the government 

should take initiative to monitor all 

immigrants and ensure necessary actions such 

as screening and curative measures are in 

place to ensure the safety of individuals. 

Furthermore, public health education on 

preventive measures through various media 

such as television, radio stations, magazines, 

and posters are critical in controlling the 

dissemination of COVID-19 to the general 

public. 
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